MATHEMATICS-II

Subject Code : MA201BS Regulations : R18 - JNTUH Class : I Year B.Tech II Semester

Department of Science and Humanities

BHARAT INSTITUTE OF ENGINEERING AND TECHNOLOGY

Ibrahimpatnam - 501 510, Hyderabad

MATHEMATICS-II (MA201BS)

COURSE PLANNER (2018-19)

I. COURSE OVERVIEW:

The students will improve their ability to think critically, to analyze a real problem and solve it using a wide array of mathematical tools. They will also be able to apply these ideas to a wide range of problems that include the Engineering applications.

II. PREREQUISITE:

- 1. Basic knowledge of Differentiation.
- 2. Basic knowledge of Integration.
- 3. Basic knowledge of calculation of basic formulas.
- 4. Basic knowledge of partial differentiation.

III. COURSE OBJECTIVE: To learn

1.	Methods of solving the differential equations of first and higher order.
2.	Evaluation of multiple integrals and their applications.
3.	The physical quantities involved in engineering field related to vector valued functions.
4.	The basic properties of vector valued functions and their applications to line, surface and
	volume integrals.

IV.COURSE OUTCOMES: After learning the contents of this paper the student must be able to

S. No	Description	Bloom's Taxonomy Level
1.	Identify whether the given differential equation of first order is exact or not.	Understand, Apply (Level 2, Level 3)
2.	Solve higher differential equation and apply the concept of differential equation to real world problems.	Understand, Apply (Level 2, Level 3)
3.	Evaluate the multiple integrals and apply the concept to find areas, volumes, centre of mass and Gravity for cubes, sphere and rectangular parallelepiped.	Understand, Apply (Level 2, Level 3)
4.	Evaluate the line, surface and volume integrals and converting them from one to another .	Understand, Apply (Level 2, Level 3)
5	Apply Gauss, Greens and Stokes theorems	Understand, Apply (Level 2, Level 3)

V. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes		Proficiency Assessed by
PO1	Engineering knowledge : To Apply the knowledge of mathematics, science, engineering fundamentals, and Computer Science Engineering to the solution of complex engineering problems encountered in modern engineering practice.		Assignments and Tutorials.
PO2	Problem analysis : Ability to Identify, formulate, review research literature, and analyze complex engineering problems related to Computer Science reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments, Tutorials and Exams.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments, Tutorials and Exams.
PO4:	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Assignments, Tutorials and Mock Exams.
P05:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern Computer Science Engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	-	
PO6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the Computer Science Engineering professional engineering	-	
P07:	Environment and sustainability : Understand the impact of Computer Science Engineering professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	
PO8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	
PO9:	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	-	
P010:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write	-	
P011:	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	
P012:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	-	

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

4: None

VI. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by	
PSO1	Foundation of mathematical concepts: To use mathematical methodologies to crack problem using suitable mathematical analysis, data structure and suitable algorithm.	2	Assignments, Tutorials and Exams.	
PSO2	Foundation of Computer System: The ability to interpret the fundamental concepts and methodology of computer systems. Students can understand the functionality of hardware and software aspects of computer systems.	1	Assignments, Tutorials and Mock Exams.	
PSO3	Foundations of Software development: The ability to grasp the software development lifecycle and methodologies of software systems. Possess competent skills and knowledge of software design process. Familiarity and practical proficiency with a broad area of programming concepts and provide new ideas and innovations towards research.	-		

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)	4: None
-----------------	----------------------	------------------------------	---------

VII. SYLLABUS:

UNIT-I: First Order ODE

Exact, linear and Bernoulli's equations; Applications: Newton's law of cooling, Law of natural growth and decay; Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type

UNIT-II: Ordinary Differential Equations of Higher Order

Second order linear differential equations with constant coefficients: Non-Homogeneous terms of the type e^{ax} , sinax, cosax, polynomials in x, $e^{ax} V(x)$ and xV(x); method of variation of parameters; Equations reducible to linear ODE with constant coefficients: Legendre's equation, Cauchy-Euler equation.

UNIT-III: Multivariable Calculus (Integration)

Evaluation of Double Integrals (Cartesian and polar coordinates); change of order of integration (only Cartesian form); Evaluation of Triple Integrals: Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals. Applications: Areas (by double integrals) and volumes (by double integrals and triple integrals), Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).

UNIT-IV: Vector Differentiation

Vector point functions and scalar point functions. Gradient, Divergence and Curl. Directional derivatives, Tangent plane and normal line. Vector Identities. Scalar potential functions. Solenoidal and Irrotational vectors.

UNIT-V: Vector Integration

Line, Surface and Volume Integrals. Theorems of Green, Gauss and Stokes (without proofs) and their applications.

GATE SYLLABUS:

Differential Equations: Ordinary Differential Equations First order ordinary differential equations, existence and uniqueness theorems for initial value problems, systems of linear first order ordinary differential equations, linear ordinary differential equations of higher order with constant coefficients; linear second order ordinary differential equations with variable coefficients

Linear Systems of Equations:

Linear transformations and their matrix representations, rank; systems of linear equations, Hermitian, Skew Hermitian and unitary matrices, Jordan

Eigen values, Eigen Vectors:

Eigen values and eigenvectors, minimal polynomial, Cayley-Hamilton Theorem, diagonalization

Functions of several variables: Functions of several variables, maxima, minima

Partial Differential Equations:

Partial Differential Equations Linear and quasi-linear first order partial differential equations, method of characteristics; second order linear equations in two variables and their classification;

IES SYLLABUS:

Matrix: Matrix theory, Eigen values & Eigen vectors, system of linear equations

Differential Equations: Numerical methods for solution of non-linear algebraic equations and differential equations

Partial differential equations: Partial derivatives, linear, nonlinear and partial differential equations, initial and boundary value problems.

VIII. LESSON PLAN-COURSE SCHEDULE:

Session	Week No	Unit	TOPIC Course learning outcomes		Reference
1.			IntroductiontodifferentialDefineDE and PDEequations		T1,T2,R2
2.	1		Linear differential equation	Solve problems on linear	T1,T2,R2
3.			Bernoulli's differential equation	Solve problems on bernoullis	T1,T2,R2
4.			Exact differential equation	Solve problems on exact	T1,T2,R2
5.		1	Applications of differential equation	Understand applications	T1,T2,R2
6.	2		Newton's law of cooling	Solve problems on law of cooling	T1,T2,R2
7.			Law of natural growth and decay	Solve problems on natural	T1,T2,R2

				growth	
8.			Law of natural growth and decay	Solve problems on natural decay	T1,T2,R2
9.			Equations not of first degree	Solve problems on equations not of first degree	T1,T2,R2
10.			Equations solvable for p	Solve problems on equations solvable for p	T1,T2,R2
11.			equations solvable for y and x	Solve problems on equations solvable for x,y	T1,T2,R2
12.	3		Clairaut's type	Solve problems on clairauts	T1,T2,R2
				Understand applications	
			*Applications of Electrical Circuits (content beyond syllabus)		
			Mock Test – I		
			UNIT – 2		
13.	4		Second order linear differential equations with constant coefficients	Find second order linear DE	T1,T2,R2
14.			Non-Homogeneous terms of the type e ^{ax}	Solve problems of type e ^{ax}	T1,T2,R2
15.			Non-Homogeneous terms of the type sin <i>ax</i>	Solve problems of type sinax	T1,T2,R2
16.			Non-Homogeneous terms of the type cosax	Solve problems of type cosax	T1,T2,R2
17.	5	2	Non-Homogeneous terms of the type polynomials in x	Solve problems of type x	T1,T2,R2
18			Non-Homogeneous terms of the type $e^{ax} V(x)$	Solve problems of type $e^{ax} V(x)$	T1,T2,R2
19			Non-Homogeneous terms of the type $xV(x)$	Solve problems of type $xV(x)$	T1,T2,R2
20.			method of variation of parameters	Solve problems using variation of parameters	T1,T2,R2
21.			Equations reducible to linear ODE with constant coefficients	Find equations reducible to linear	T1,T2,R2
22.	_		Equations reducible to linear ODE with constant coefficients	Find equations reducible to linear	T1,T2,R2
23.	6		Legendre's equation	Solve problems on legendres	T1,T2,R2
24.			Cauchy-Euler equation.	Solve problems on cauchys euler equation	T1,T2,R2
		2	* Applications of Simple Harmonic Motions (content	Understand applications	

			beyond syllabus)				
			Tutorial / Bridge Class # 1				
			UNIT – 3				
25.			Evaluation of Double Integrals (Cartesian and polar coordinates)	Apply double integrals	T2,R3,R1		
26.	. 7		Evaluation of Double Integrals (Cartesian and polar coordinates)	Apply double integrals	T2,R3,R1		
27.			Evaluation of Triple Integrals	T2,R3,R1			
28.		-	Evaluation of Triple Integrals	Apply triple integralsApply triple integrals	T2,R3,R1		
29.		_	Applications: Areas (by double integrals)	Find areas using double integration	T2,R3,R1		
30.		-	Applications: Areas (by double integrals)	Find areas using double integration	T2,R3,R1		
31.	8	3	Applications: volumes (by double integrals and triple integrals)	Find volume using triple integration	T2,R3,R1		
32.					Applications: volumes (by double integrals and triple integrals)	Find volume using triple integration	T2,R3,R1
			Tutorial / Bridge Class # 2				
	r		I Mid Exami				
33.			change of order of integration (only Cartesian form)	Apply change of order	T2,R3,R1		
34.			Change of variables (Cartesian to polar) for double and (Cartesian to Spherical and Cylindrical polar coordinates) for triple integrals	Apply change of variable	T2,R3,R1		
35.			Centre of mass and Gravity (constant and variable densities)	Find centre of mass and gravity			
	9	3	by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).		T2,R3,R1		
36.			Centre of mass and Gravity (constant and variable densities) by double and triple integrals (applications involving cubes, sphere and rectangular parallelopiped).	Find centre of mass and gravity	T2,R3,R1		
			• Evaluation of surface and volume using MATLAB (contents beyond the syllabus)	Understand application			
07	<u> </u>		UNIT – 4	1			
37			Vector point functions	Define vector point function	T1,T3, R1,R2		
	10						

39			Gradient	Apply Gradient	T1,T3, R1,R2
40			Divergence	Find Divergence	T1,T3, R1,R2
41			Directional derivatives	Find directional derivatives	T1,T3, R1,R2
42			Curl	Find Curl	T1,T3, R1,R2
43	11		Tangent plane and normal line	Find tangent and normal plane	T1,T3, R1,R2
44			Vector Identities	Apply vector identities	T1,T3, R1,R2
			Tutorial / Bridge Class # 3		
45			Vector Identities	Apply vector identities	T1,T3, R1,R2
46		4	Scalar potential functions	Find scalar potential function	T1,T3, R1,R2
47			Solenoidal vectors	Find solenoidal vector	T1,T3, R1,R2
48			Irrotational vectors	Find irrotational vectors	T1,T3, R1,R2
	12		ApplicationsofimproperintegralsandSignalsandSystems(contentbeyond the syllabus)	Understand application	
			Mock Test - II		
			UNIT – 5		I
49			Line integral	Evaluate Line integral	T1,T3, R1,R2
50	13		Line integral	Evaluate Line integral	T1,T3, R1,R2
51			Surface integral	Evaluate surface integral	T1,T3, R1,R2
52			Surface integral	Evaluate surface integral	T1,T3, R1,R2
53			Volume integral	Evaluate volume integral	T1,T3, R1,R2
54	14		Volume integral	Evaluate volume integral	T1,T3, R1,R2
55			Gauss Divergence Theorem	Apply gauss theorem	T1,T3, R1,R2
56			Gauss Divergence Theorem	Apply gauss theorem	T1,T3, R1,R2
57			Greens Theorem	Apply greens theorem	T1,T3, R1,R2
58			Greens Theorem	Apply greens theorem	T1,T3, R1,R2
59		5	Stokes Theorem	Apply stokes theorem	T1,T3, R1,R2
60		-	Stokes Theorem	Apply stokes theorem	T1,T3, R1,R2
	15		PDE applications in Computational Fluid Dynamics and Aerodynamics etc.(content beyond syllabus)	Understand application	
			Tutorial / Bridge Class # 4		
			II Mid Examina		

SUGGESTED BOOKS: TEXT BOOKS:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010

Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons,2006
 G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.

REFERENCES:

1. Paras Ram, Engineering Mathematics, 2nd Edition, CBS Publishes

2. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes			-	-	Pro	ogram C	Outcome	es (PO)						gram Spe comes (P	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2	PSO3
Ι	3	2	2	1	-	-	-	-	-	-	-	-	2	1	-
II	2	2	2	1	-	-	-	-	-	-	-	-	1	1	-
III	3	1	2	1	-	-	-	-	-	-	-	-	2	1	-
IV	3	2	1	1	-	-	-	-	-	-	-	-	2	1	-
V	2	2	2	1	-	-	-	-	-	-	-	-	1	1	-
AVG	2.6	1.8	1.8	1.0	-	-	-	-	-	-	-	-	1.6	1.0	-

1: Slight(Low)

2: Moderate (Medium)

3: Substantial(High)

4: None

QUESTION BANK: (JNTUH)

DESCRIPTIVE QUESTIONS:

UNIT I

S.No	Question	Blooms taxonomy	Course outcome
		level	
1	$Solve(e^{y} + 1)cosxdx + e^{y}sinxdy = 0$	Understand	1
2	Solve $(1 + e^{x/y})dx + e^{x/y}(1-x/y) dy=0.$	Understand	1
3	Solve the differential equation $(y-yx)dx + (x+xy)dy = 0$.	Understand	1
4	Write the working rule to solve Bernoulli's equation.	Remember	1
5	A copper ball is heated to a temperature of 80c if at time $t=0$ in water which is maintained at 30C. If at $t=3$ minutes, the temperature of the ball is reduced to 50C. Find the time at which the temperature of the ball is 40C.	Apply	1
6	Sove the differential equation $x^2ydx - (x^3 + y^3)dy = 0$	Understand	1
7	Solve $(xy Sin xy + Cos xy)y dx + (xy Sin xy - Cos xy)x dy =0$	Understand	1

8	Solve the differential equation $\frac{dy}{dx} + ytanx = y^2 secx$	Understand	1
9	If the air is maintained at 25° C and temperature of the body cools from 140° C to 80° C in 20 minutes find when the temperature will be 35° C.	Apply	1
10	Solve the differential equation $y(2xy + e^x)dx - e^xdy = 0$	Understand	1

S.No	Question	Blooms taxonomy level	Course outcome
1	Solve the differential equation $\frac{dy}{dx} + ytanx = y^2 secx$	Understand	1
2	Solve the differential equation $(xysinxy + cosxy)ydx + (xysinxy - cosxy)xdy = 0$	Understand	1
3	If the air is maintained at 15° C and the temperature of the drops from 70_{\circ} C to 40° C in 10 minutes. What will be its temperature after 30 minutes	Apply	1
4	If 30% of radioactive substance disappears in 10 days then how long will it take for 90% of it to disappear?	Apply	1
5	Solve the differential equation $y(2xy + e^x)dx - e^xdy = 0$	Understand	1
6	The temperature of the body drops from 100° c to 75° c in 10 minutes when the surrounding air is at 20° c.then what will be its temperature after half an hour and when will be the temperature 25° c.	Apply	1
7	Solve $\frac{dy}{dx} - \frac{tany}{1+x} = (1+x)e^x secy$	Understand	1
8	Solve $\frac{dy}{dx} - \frac{tany}{1+x} = (1+x)e^x secy$ Solve $(x+y-1)\frac{dy}{dx} = (x-y+2)$. Solve $\frac{dy}{dx} + (y-1)cosx = e^{-sinx}cos^2x$ Solve $(2x+y-3)dy = (x+2y-3)dx$	Understand	1
9	Solve $\frac{dy}{dx} + (y-1)cosx = e^{-sinx}cos^2x$	Understand	1
10	Solve $(2x + y - 3)dy = (x + 2y - 3)dx$	Understand	1

UNIT II

S.No	Question	Blooms taxonomy	Course outcome
		level	
1	Solve the differential equation $(D^2 - 4)y = 2cos^2x$	Understand	2
2	Solve the differential equation $(D^2 + 9) = cos3x + sin2x$	Understand	2
3	Solve the Differential equation $(D^4+2D^2+1)y = x^2cos^2x$	Understand	2
4	Solve $(D^2-2D+1)y=x^2e^{3x}-\sin 2x+3$	Understand	2
5	Solve the differential equation $(D^2 + 4) = cos2x + sin3x$		2
6	By using variation of parameters solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$	Understand	2
7	Solve the Differential Equation $(D^2 + 3D + 2)y = e^{2x}cosx + 2cos(2x + 3)$	Understand	2
8	Solve $(D^2-2D+2)y=e^x \tan x$ by method of variation of parameters	Understand	2
9	Solve $(D^2-2D+1)y=x^2e^{3x}-\sin 2x+3$	Understand	2
10	Solve $(D^2+4D+5)y=5$	Understand	2

Long Answer Questions

S.No	Question	Blooms	Course
		taxonomy level	outcome
1	Solve $\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-x}\sin x + x$	Understand	2
2	Solve $\frac{d^2 y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$	Understand	2
3	Solve $\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 3y = e^x \cos 3x$	Understand	2
4	Solve $\frac{d^2 y}{dx^2} - 3\frac{dy}{dx} + 2y = xe^{3x} + \sin 2x$	Understand	2
5	Solve $x^3 \frac{d^3 y}{dx^2} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$	Understand	2
6	Solve $(D^2+1) x = t \cos 2t$	Understand	2
7	Explain the method of variation of parameters.	Remember	2
8	Solve $(D^3-3D+4)y = 0$	Understand	2
9	Solve $(D^2+4D+3)y = e^{e^x}$	Understand	2
10	Solve $(D^3-6D^2+11D-6)y = e^{-2x}+e^{-3x}$	Understand	2

UNIT III

S.No	Question	Blooms taxonomy level	Course outcome
1	Evaluate $\int_0^{\frac{\pi}{4}} \int_0^{a \sin \theta} \frac{r dr d\theta}{\sqrt{a^2 - r^2}}$.	Apply	3
2	Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dx dy$.	Apply	3
3	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} xyz dz dy dx.$	Apply	3
4	Evaluate $\iiint_V (x + y + z) dx dy dz$ where the domain V is bounded by the plane $x + y + z = a$ and the coordinate planes.	Apply	3
5	Evaluate the double integral $\int_0^a \int_0^{\sqrt{a^2 - y^2}} (x^2 + y^2) dy dx$.	Apply	3
6	By changing the order of integration evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dy dx$.	Apply	3
7	Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$	Apply	3
8	Explain change of variable in double and triple integrals	Remember	3
9	Evaluate $\int_0^{4a} \int_{\frac{y^2}{4a}}^{\frac{y}{2}} \frac{x^2 - y^2}{x^2 + y^2} dx dy$ by change of variables in polar form	Apply	3

10	Sketch the region of integration of the integral		3
	$\int_0^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x,y) dx dy$	Apply	

S.No	Question	Blooms taxonomy level	Course outcome
1	Evaluate $\iint_{R} y dx dy$ Where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.	Apply	3
2	Evaluate by changing order of integration $\int_{0}^{a} \int_{x/a}^{\sqrt{x}/a} (x^2 + y^2) dx dy$	Apply	3
3	Compute the value of $\iint_{R} y dx dy$ Where R is the region in the I st quadrant bounded by the Ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.	Apply	3
4	Evaluate $\iiint (x + y + z) dx dy dz$ over the tetrahedron x=0, y=0, z=0 and the plane	Apply	3
5	Evaluate $\iint_{R} y dx dy$ Where R is the region bounded by the	Apply	3
6	parabolas $y^2 = 4x$ and $x^2 = 4y$. Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\infty} \frac{rdrd\theta}{(r^2 + a^2)^2}$.	Apply	3
7	Evaluate by changing the order of integration $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{xdydx}{\sqrt{x^2+y^2}}$.	Apply	3
8	Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dx dy dz$.	Apply	3
9	Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$. Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dy dx$	Apply	3
10	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dy dx$	Apply	3

UNIT IV

S.No	Question	Blooms	Course
		taxonomy	outcome
		level	
1	Prove that $r^n \bar{r}$ is Irrotational.	Understand	4
2	Find $div \bar{f}$ where $\bar{f} = r^n \bar{r}$. Find <i>n</i> if it is Solenoidal.	Understand	4
3	Find the directional derivative of $2xy + z^2$ at (1, 1, 3) in the direction	Understand	4
	of i+2j+3k.		
4	If a is constant vector prove $grad(a.f) = (a .grad) f + (a x curl f)$.	Understand	4
5	Show that $curl(r^n\bar{r})=\bar{0}$.	Understand	4
6	Show that if F and G are irrotational FXG is Solenoidal.	Understand	4

7	Find the work done by $F = (2x-y-z)i + (x+y-z)j + (3x-2y-5z)k$	Understand	4
	along a curve 'C' in the xy-plane given by $x^2+y^2=9$	Understand	
8	Find the work done by $F = (2x-y-z)i + (x+y-z)j + (3x-2y-5z)k$	Understand	4
	along a curve 'C' in the xy-plane given by $x^2+y^2=4$	Understand	
9	If $\overline{F} = xy\overline{\iota} - z\overline{j} + x^2\overline{k}$ and c is the curve $x = t^2$	Understand	4
10	Evaluate the line integral $\int_c [(x^2 + xy)dx + (x^2 + y^2)dy]$ where c	Apply	4
	is the square formed by the lines $x \pm 1$	rppiy	

S.No	Question	Blooms taxonomy level	Course outcome
1	Prove that $\nabla(r^n) = nr^{n-2}\bar{r}$.	Understand	4
2	Prove that $div(\bar{a} \times \bar{b}) = \bar{b}. curl \bar{a} - \bar{a}. curl \bar{b}$	Understand	4
3	(a) Prove that $(grad r^m) = m(m+1)r^{m-2}$. (b) Show that curl (curl F) = grad(div F) - ∇^2 F.	Understand	4
4	$S.T \nabla \times (\nabla \times \overline{a}) = \nabla (\nabla . \overline{a}) - \nabla^2 \overline{a}.$	Understand	4
5	If \bar{r} is the position vector of the point P(x, y, z) then P.T $\nabla f(r) = f^{I}(r)\frac{\bar{r}}{r}$.	Understand	4
6	Find the value of a and b so that the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ may intersect orthogonally at the point (1, -1, 2).	Understand	4
7	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2).	Understand	4
8	S.T $\nabla^2[f(r)] = \frac{d^2f}{dr^2} + \frac{2}{r}\frac{df}{dr}$. Where $\mathbf{r} = \bar{r} $.	Understand	4
9	P.T $\nabla \times \left(\frac{\bar{A} \times \bar{r}}{r^n}\right) = \frac{(2-n)\bar{A}}{r^n} + \frac{n(\bar{r}.\bar{A})\bar{r}}{r^{n+2}}$	Understand	4
10	P.T Curl $(\bar{a} \times \bar{b}) = \bar{a} div\bar{b} - \bar{b} div\bar{a} + (\bar{b} \cdot \nabla)\bar{a} - (\bar{a} \cdot \nabla)\bar{b}$.	Understand	4

UNIT V

S.No	Question	Blooms taxonomy level	Course outcome
1	State Gauss divergence theorem.	Remember	5
2	State Green's theorem in a plane,	Remember	5
3	State Stoke's theorem.	Remember	5
4	Verify Green's theorem in plane for $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where <i>C</i> is the region bounded by $y = \sqrt{x}$ and $y = x^2$.	Apply	5
5	Evaluate $\iint_S \overline{F} \cdot \overline{n} ds$, where $\overline{F} = 2x^2y\overline{i} - y^2\overline{j} + 4xz^2\overline{k}$ and S is the closed surface of the region in the first octant bounded by the cylinder $y^2 + z^2 = 9$ and the planes $x = 0, x = 2, y = 0, z = 0$.	Apply	5

6	Verify Stokes theorem for $\overline{F} = (y - z + 2)\overline{i} + (yz + 4)\overline{j} - xz\overline{k}$	Apply	5
	where S is the surface of the cube $x = 0, y = 0, z = 0, x = 2, y =$		
	2, $z = 2$ above the xy –plane.		
7	Apply stokes theorem, to evaluate $\oint_c^{\cdot} y dx + z dy + x dz$) where c is	Apply	5
	the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and $x + a^2 $		
	z = a		
8	Apply stoke's theorem and show that $\iint_{S} curl \overline{F} \cdot \overline{n} ds =$	Apply	5
	0 where \overline{F} is any vector and $s=x^2 + y^2 + z^2 = 1$		
9	Verify green's theorem in the plane for $\oint_c (x^2 - xy^3) dx +$	Apply	5
	$(y^2 - 2xy)dy$ where C is a Square with vertices		
	(0,0),(2,0),(2,2),(0,2)		
10	Apply Green's theorem to Evaluate $\oint_c (2x^2 - y^2)dx + (x^2 + y^2)dy$	Apply	5
	where c is the boundary of the area enclosed by the x-axis and upper		
	half of the circle $x^2 + y^2 = a^2$		

S.No	Question	Blooms taxonomy level	Course outcome
1	Verify Gauss Divergence Theorem for $\overline{f} = (x^3 - yz)\overline{\iota} - vz$	Apply	5
	$2x^2y\overline{j} + z\overline{k}$ taken over the surface of the cube bounded by the		
	planes $x = y = z = a$ and coordinate planes .		
2	If $\overline{F} = 4xz\overline{i} - y^2\overline{j} + yz\overline{k}$ evaluate $\int_S \overline{F} \cdot \overline{n} ds$ where S is the surface	Apply	5
	of the cube bounded by $x = 0$, $x = a$, $y = 0$, $y = a$, $z = 0$, $z = a$.		
3	Verify Green's theorem in plane for $\oint (3x^2 - 8y^2) dx +$	Apply	5
	$(4y - 6xy) dy$ where C is the region bounded by $y = \sqrt{x}$ and $y = x^2$.		
4	Evaluate $\iint_S \overline{F} \cdot \overline{n} ds$, where $\overline{F} = 2x^2y\overline{\iota} - y^2\overline{j} + 4xz^2\overline{k}$ and S is the	Apply	5
	closed surface of the region in the first octant bounded by the		
	cylinder $y^2 + z^2 = 9$ and the planes $x = 0, x = 2, y = 0, z = 0$.		
5	Verify Stokes theorem for $\overline{F} = (y - z + 2)\overline{i} + (yz + 4)\overline{j} - xz\overline{k}$	Apply	5
	where S is the surface of the cube $x = 0, y = 0, z = 0, x = 2, y =$		
	2, $z = 2$ above the xy -plane.		
6	Evaluate $\iiint \nabla \cdot F dV$ where V is the cylindrical region bounded by x^2	Apply	5
7	$+y^2 = 9$, z=0, z=2, F =yi +xj +z^2k.	A 1	~
7	Verify Green's Theorem in a plane for $\int_C (y - sinx)dx + cosx dy$	Apply	5
	where C is the triangle joins (0, 0), (π /, 0), (π /2, 1).		
8	Evaluate using Green's theorem $\int_C x^2 y dx + y^3 dy$ where C is the	Apply	5
	closed path formed by $y = x$, $y^3 = x^2$ form (0, 0) to (1, 1).		
9	Evaluate $\iint \mathbf{F} \cdot n dS$ where $F = xzi + yzj + z^2 k$ and S is the upper half of	Apply	5
	the sphere $x^{2} + y^{2} + z^{2} = 1.$		
10	Use divergence theorem to Evaluate $\iint (y^2 z^2 i + z^2 x^2 j + z^2 y^2 k)$. n ds where S is the part of the unit sphere above the x y plan.	Apply	5

OBJECTIVE QUESTIONS: JNTUH

UNIT I

1. The general solution of $\frac{dy}{dx} = e^{x+y}$ a) $e^{x} + e^{y} = c$ b) $e^{x} - e^{y} = c$ c) $e^{xy} = c$ d) none 2. The integrating factor of $(x^3y^3+x^2y^2+xy) y dx + (x^3y^3-x^2y^2-xy) x dy = 0$ a) $\frac{1}{2xy(1+xy)}$ b) $\frac{1}{2x^2y^2(1+xy)}$ c) $\frac{1}{1+xy}$ d) none 3. Degree of $\frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{d} \mathbf{x}^2} - 2 \frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \mathbf{x}} + 10 \mathbf{y} = 0$ is a) 0 b) 1 c) 2 d) none 4. The condition for exactness of differential equation if M dx +N dy = 0 is a) $\frac{\partial \mathbf{M}}{\partial \mathbf{x}} = \frac{\partial \mathbf{N}}{\partial \mathbf{v}}$ b) $\frac{\partial \mathbf{M}}{\partial \mathbf{v}} = \frac{\partial \mathbf{N}}{\partial \mathbf{x}}$ c) $\frac{-\partial \mathbf{M}}{\partial \mathbf{x}} = \frac{\partial \mathbf{N}}{\partial \mathbf{v}}$ d) none 5. Evaluate the Wronskian of e^x & x is _____ c) x e^x d) none b) (x+1) e^{x} a) $(1-x) e^{x}$ 6. P.I. of $\frac{d^3 y}{dx^3} + y = e^{-x}$ is a) $xe^{\frac{-x}{3}}$ b) $e^{\frac{-x}{3}}$ c) $-xe^{\frac{-x}{3}}$ d) none 7. The order of $\frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{d} \mathbf{x}^2} - 2 \frac{\mathbf{d} \mathbf{y}}{\mathbf{d} \mathbf{x}} + 10 \mathbf{y} = 0$ is a) 0 c) 2 d) none b) 1 8) The general solution of $\frac{ydx - xdy}{y^2} = 0$ b) x = cy c) y = cxa)xy = cd) none 9) The equation $\frac{dy}{dx} + \frac{ax+hy+g}{hx+by+f} = 0$ is _____ a) homogeneous b) non-homogeneous c) exact d) none 10) The general solution of $\frac{xdy+ydx}{y^2+x^2} = 0$ a) $\log(x + y) = c$ b) $\log(x^2 + y^2) = c$ c) $\log xy = c$ d) none 11. The order and degree of $\frac{d^2 y}{dy^2} = \left[y + \left(\frac{dy}{dx}\right)^6 \right]^{\frac{1}{4}}$ is _____

- a) $\frac{x^2}{4}e^x + \frac{e^{-x}}{8}$ b) $\frac{x^2}{4}e^{-x} + \frac{e^x}{8}$ c) $\frac{x^2}{4}e^x$ d) $c_1 e^x + c_2 e^{-x}$
- 6. Complementary Function of $(D-1)^4 y = e^x$ is

a)
$$\frac{x^4}{4}e^x$$
 b) x^4e^x c) $(c_1+c_2x+c_3x^2+c_4x^3)e^x$ d) $e^{x/4}$

7. Complementary Function of $(D^2-2D+1) y = \cos hx$ is

a)
$$\frac{x^2}{4}e^x + \frac{e^{-x}}{8}$$
 b) $(c_1 + c_2 x)e^x$ c) $\frac{x^2}{4}e^x$ d) $c_1 e^x + c_2 e^{-x}$

8. General solution of $(D^2+1) y = 0$ is

a)
$$c_1 \cos x + c_2 \sin x$$
 b) $\frac{x^2}{4}e^{-x} + \frac{e^x}{8}$ c) $\frac{x^2}{4}e^x$ d) $c_1 e^x + c_2 e^{-x}$

9). $\frac{sinx}{D^2 + D + 1} =$

a)
$$\sin x$$
 b) $\cos x$ c) $\frac{\sin x}{3}$ d) none

10) P.I. of $(D^2+a^2) y = Cos ax$ is a) xcosax b) xsinax c) $\frac{xsinax}{2a}$ d) none

11. The Integrating factor of
$$\frac{dy}{dx} + p(x)y = q(x)$$
 is _____

- 12. _____ is the particular integral of $(D^2+5D+6)y=e^x$
- 13. The integrating factor of $(1 x^2) y + xy = ax$ is _____
- 14. The complementary function of $(D-1)^2 y=\sin 2x$ is _____

15. The value of
$$\frac{1}{D+2}(x+e^x)$$
 is ______

- 16. The solution of the Differential equation $(D^2+4)y=\tan 2x$ is _____
- 17. The particular integral of $(D^2+a^2)y=\cos x$ is _____
- 18. The solution of the Differential equation $(D^2+4)y=\sec 2x$ is _____

19. The value of
$$\frac{1}{D^2 + D + 1} \sin x$$
 is _____

20. The solution of $(D^2 - 4D + 4) y = x^2 \sin x + e^{2x} + 3 is$

UNIT III

1.
$$\int_{0}^{1} \int_{0}^{2} \int_{0}^{2} x^{2} yz \, dz \, dy \, dx = \underline{\qquad}.$$

a) ¹/₂ b) ¹/₄ c) 1 d) 3/2
2.
$$\int_{0}^{1} \int_{1}^{2} xy \, dy \, dx = \underline{\qquad}.$$

a) ¹/₂ b) ¹/₄ c) 1 d) ³/₄
3.
$$\int_{0}^{\pi} \int_{0}^{a \cos \theta} r \sin \theta \, dr \, d\theta = \underline{\qquad}.$$

a) $\frac{a^{2}}{2}$ b) $\frac{a^{2}}{3}$ c) $\frac{a^{3}}{4}$ d) $\frac{a^{3}}{3}$

4. The volume of the tetrahedron bounded by the coordinate planes and the plane x + y + z = 1 is _____.

- a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{1}{4}$ d) $\frac{1}{6}$ 5. The volume of the tetrahedron bounded by the surfaces x = 0, y = 0, z=0 and
- $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \text{ 1 is } \underline{\qquad}.$ a) $\frac{abc}{2}$ b) $\frac{abc}{3}$ c) $\frac{abc}{4}$ d) $\frac{abc}{6}$ 6. In polar coordinates $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx \, dy = \underline{\qquad}.$

a)
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} dr d\theta$$
 b) $\int_{0}^{\frac{\pi}{4}} \int_{0}^{\infty} e^{-r} r dr d\theta$ c) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta$ d) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} e^{-r} dr d\theta$

7. An equivalent iterated integral with order of integration reversed for $\int_{0}^{1} \int dy dx$ is ____.

a)
$$\int_{0}^{1} \int_{1}^{e^{y}} dx dy$$
 b) $\int_{1}^{e^{y}} \int_{0}^{e^{y}} dx dy$ c) $\int_{e^{y}}^{1} \int_{1}^{\log y} dx dy$ d) none.

8. The integrated integral for $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} f(x, y) \, dy \, dx$ after changing order of integration is _

a)
$$\int_{-1}^{1} \int_{\sqrt{1-y^2}}^{\sqrt{1-y^2}} f \, dx \, dy$$
 b) $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} f \, dx \, dy$ c) $\int_{0}^{1} \int_{\sqrt{1-y^2}}^{\sqrt{1-y^2}} f \, dx \, dy$ d) none

9. [[] $(x^2 + y^2 + z^2)dzdydx$ where v is the volume of the cube bounded by the

coordinate planes x=y=z=9 is ______. a) $a^5 / 5$ b) $a^5 / 25$ c) a^5 d) $(0.2 a)^5$ 10. The volume of the solid generated by revolution of part of the parabola $y^2 = 4ax$ cut off by latus rectum about the tangent at the vertex is _____.

a)
$$\frac{8\pi a^3}{5}$$
 b) $\frac{16\pi a^3}{5}$ c) $\frac{4\pi a^3}{5}$ d) $\frac{2\pi a^3}{5}$

- 11. The area of the portion of the plane x + y + z = 1 in the first octant is _____.
- 12. The value of $\iint xy \, dxdy$ over the area bounded by parabola x=2a and x²=4ay is _____. 13. $\int_0^2 \int_0^x (x+y) dy dx =$ _____.
- 14. What is the volume bounded by $z = x^2 + y^2$ and z = 4 _____.
- 15. $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dz dy dx$ is _____
- 16. The iterated integral for $\int_{-1}^{1} \int_{0}^{x} f(x, y) dy dx$ after changing the order of integration is _____
- 17. $\int_0^{\pi} \int_0^{a\cos\theta} r \, dr d\theta$ is _____.
- 18. The value of $\iiint (x + y + z) dx dy dz$ over the tetrahedron bounded by the co-ordinate planes and the plane x+y+z = 1 is _____.
- 19. The relation between the Cartesian coordinates x, y, z and the Cylindrical coordinates ρ, θ, z is _____.
- 20. The value of volume bounded the yz plane, the cylinder $y^2 + z^2 = 4$ and the plane x+y+z = 3 is _____.

UNIT IV

=	on vector of any point in space,		1
—	_ ^	c) both(a&b)	d) none
2. If curl $r = 0$ then			•
	b) Irrotational 0 then grad ϕ is	c) both(a&b)	d) none
	b) both(a&c)	c) Irrotational	d)none
u) Solonolaul		c) mountoina	ajiioile
4. If div $\overline{f} = 0$ then	\overline{f} is		
a) Solenoidal	b) Irrotational	c) both	d)none
5. If \overline{a} is const vec	ctor then grad $(\overline{a}, \overline{r})$ is	_•	
a) \overline{a}	b) 0	c) 1	d)none
6. $f = x^3 + y^3 + 3xyz$ th	nen grad $f = $		
a) - $(3x^2+3yz)\overline{i}$	$+(3y^2+3xy)\bar{j}+3xy$ b) $(3x^2+3y)$	$(z)\bar{i} + (3y^2 + 3xy)\bar{j} + 3xy c)0$	d) none
7. If $\vec{r} = xi + yj + zk$ t	then $\nabla [\vec{r}/r^3] = \underline{\qquad}$.		
	b) 0	c) -1	d) none
8. \bar{r} =xi+yj+zk then			
a) $f^{1}(r)/r$	b) $\bar{r}f^{1}(r)/r$	c) $\bar{r} f^1(r)$	d)none
9 If \bar{r} -xi+vi+zk th	nen grad (r ⁿ) is		
	b) $r^{n-2} \bar{r}$	c) 0	d)none
	-)		
10. ∇ [$\nabla . \overline{r} / r$] =	·		
a) $2 \bar{r} / r^3$	b) -2 \bar{r}/r^3	c) \bar{r}/r^3	d)none
11. ∇ [r ∇ (1/r ³)]=_			
	xyz then curl(grad \emptyset)=		
•	then $\nabla^2 \left(\frac{1}{r}\right) = \underline{\qquad}$	-	
	nd if $(r^n \bar{r})$ is solenoidal then	n —	
••	tor then $\operatorname{curl}(\bar{r} \times \bar{a})$ is	<i>n</i> –	
	z^2 satisfies Laplacian equation the	hen $a+b+c = $	
-	\bar{a} is called		
	retation of $ \nabla \phi $ is		
	ator is denoted by		
20. The harmonic f	unction of φ is		

UNIT V

The work done by the force (3x-2y)i+(y+2z)j-(x²)k in moving along the straight line joining (0, 0, 0) & (1, 1, 1) is _____.

	a)1/2	b) 2/5	c) 5/3	d) none			
2.	The circulation	of $\overline{F} = (2x-y+2z)i+(x+z)i$	y-z)j+(3x-2y-5	z)k along the circle $x^2+y^2=4$ in the			
	xy plane is						
	a) 8π	b)5π	c) 3π	d)none			
3.	If $\overline{F} = (x+y^2)i-2x$	j+2yzk evaluate $\int \overline{F}$.	\bar{n} ds over the	he surface $x^2+y^2+z^2=1$ in the first			
	octant is	·					
	a)2/8	b) 3/8	c)1/8	d) none			
4.	If any closed s	surface S enclosing	a volume V	and $\overline{F} = xi + 2yj + 3zk$ then $\iint \overline{f} \cdot \overline{n} ds =$			
	•						
	a) 6V	b)5V c)2V	d) none				
~	[[(dd	- d., d., d.,) 1,		-2 -2 :-			
Э.		zdx + zdxdy) where					
6	_	b) c) 4πa	d^2 d nc	one			
0.	$\oint Mdx + Ndy =$		Л				
	a) $\oint_{S} \left(\frac{\partial N}{\partial x} + \frac{\partial M}{\partial y} \right)$	$dxdy$ b) $\oiint_{S} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial y}\right)$	$\frac{d}{dx} dx dy$ c)0	d) none			
7.	If $\overline{F} = (x+y^2)i-2x$	j+2yzk evaluate $\int \overline{F}$.	\overline{n} ds over the	he surface $x^2+y^2+z^2=1$ in the first			
	octant is						
	a) 3/8	b) 1/2	c) 3/4 d) no	one			
8.	The necessary a	nd sufficient condition	on that the line	integral $\int A.dr=0$ for every closed			
	curve C is	<u> </u> .					
	a) simple	b) multiple	c) bot	th d) none			
9.	The volume of	the line integral $\int g g$	rad(x + y - z)	c) dr from (0, 1, -1) to (1, 2, 0) is			
	·						
	a) -3	b) 3 c)0	d) none				
10				e of the unit sphere is			
	a) $\frac{4}{3}\pi(a+b+c)$.	b) $-\frac{4}{3}\pi(a+b)$	+c). c) $\frac{4}{3}$	π (a-b+c). d)none			
11. A conservative force field is							
				epresentstheorem			
13. If \bar{n} is the unit outward drawn normal to any closed surface then $\int div \bar{n} dV$ is							
14. The representation of line integral is							
15	5. The value of ∫[$(x^2 + xy)dx + (x^2 + x^2)dx + (x^2 + x^2)dx$	+ y2)dy] over	the region $x=0,x=1,y=0,y=1$ is			
16. The representation of volume integral is							
17. The relation between line and surface integrals representstheorem							
18. The value of $\int [e^x dx + 2y dy - dz]$ over the region $x^2 + y^2 = 9$, $z = 2$ is							
19. The representation of surface integral is							
20). The relation bet	ween line and double	integrals repre	esentstheorem			

WEBSITES:

- 1. www.geocities.com/siliconvalley/2151/matrices.html
- 2. www.mathforum.org/key/nucalc/fourier.html

- 3. www.mathworld.wolfram.com
- 4. www.eduinstitutions.com/rec.htm
- 5. www.isical.ac.in
- 6. http://nptel.ac.in/courses/111108066/
- 7. http://nptel.ac.in/courses/111106051/
- 8. http://nptel.ac.in/courses/111102011/
- 9. http://nptel.ac.in/syllabus/syllabus.php?subjectId=111103019

EXPERT DETAILS:

INTERNATIONAL

Prof. Diliberto, Stephen P.L.
Research Area: Ordinary Differential Equations,
Postal Address: Department of Mathematics
University of California, Berkeley.
Email ID: <u>dliberto@math.berkeley.edu</u>
NATIONAL
1. Prof. N.S. Gopal Krishna
Research Area: Differential Equations,
Postal Address: Department of Mathematics,
IIT Mumbai.
Email ID : <u>gopal@math.iitb.ac.in</u>
2. Prof. S. Kesavan
Research Area : Analysis and Differential Equations,
Postal Address: Department of Mathematics,
Institute of Mathematical Sciences, Chennai.

Email ID: kesh@imsc.res.in

JOURNALS: INTERNATIONAL

- 1. Journal of American Mathematical Society
- 2. Journal of differential equations Elsevier
- 3. Pacific Journal of Mathematics
- 4. Journal of Australian Society
- 5. Bulletin of "The American Mathematical Society"
- 6. Bulletin of "The Australian Mathematical Society"
- 7. Bulletin of "The London Mathematical Society"

NATIONAL

- 1. Journal of Interdisciplinary Mathematics
- 2. Indian Journal of Pure and Applied Mathematics
- 3. Indian Journal of Mathematics
- 4. Proceedings of Mathematical Sciences
- 5. Journal of Mathematical and Physical Sciences.
- 6. Journal of Indian Academy and Sciences

LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Orthogonal trajectory.
- 2. Natural law of growth and decay.
- 3. Newton's law of cooling.
- 4. Evaluation of Multiple integration.
- 5. Geometrical interpretation of Curl and Divergence.

CASE STUDIES / SMALL PROJECTS:

- 1. Describe about the Quadratic forms and its nature.
- 2. Discuss about the Concept of simple harmonic motion and electrical circuits in detail.
- 3. Describe about the geometrical meaning of double and triple integration.
- 4. Discuss about the orthogonal trajectory with examples.
- 5. Discuss the applicability of vector integral theorem.

Prepared by				Reviewed by		
	Name	Signature		Name	Signature	
1 2	CH. Kumara Swamy Mrs. A.Sneha Prabha		1	Dr H.P Srichand.		