EC722PE: DATABASE MANAGEMENT SYSTEMS (PE – IV) COURSE PLANNER

Course Overview:

This course introduces the core principles and techniques required in the design and implementation of database systems. This course focus on relational database management systems, including database design theory: E-R modeling, data definition and manipulation languages, database security and administration. It also covers essential DBMS concepts such as: Transaction Processing, Concurrency Control and Recovery and various types of databases like distributed database, and intelligent database, Client/Server. Students undertake a semester project to design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS. It also provides students with theoretical knowledge and practical skills in the use of databases and database management systems in information technology applications.

Prerequisites:

Data Structures

Course Objectives:

At the end of the course, the students will be able to:

- Understand the basic concepts and the applications of database systems.
- *Master* the basics of SQL and construct queries using SQL.
- *Understand* the relational database design principles.
- *Familiar* with the basic issues of transaction processing and concurrency control.
- *Familiar* with database storage structures and access techniques.

Course Outcomes:

S. No.	Course Outcomes (CO)	Knowledge Level (Blooms Level)
After con	pleting this course the student must demonstrate the knowledge a	and ability to:
CO1	<i>Demonstrate</i> the basic elements of a relational database management system.	Application (Level 2)
CO2	<i>Identify</i> the data models for relevant problems.	Remember(Level 1)
CO3	<i>Design</i> entity relationship and convert entity relationship diagrams into RDBMS and formulate SQL queries on the respect data into RDBMS and formulate SQL queries on the data.	Analyze, Create (Level 4, Level 6)
CO4	<i>Demonstrate</i> their understanding of key notions of query evaluation and optimization techniques.	Application (Level 2)
CO5	<i>Extend</i> normalization for the development of application software's.	

How Program Outcomes are assessed:

Program	n Outcomes (PO)	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments, Tutorials, Mock Tests
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Assignments, Tutorials
PO3	Design/development of solutions : Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments, Tutorials, Mock Tests
PO4	Conduct investigations of complex problems : Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	Assignments, Tutorials, Mock Tests
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Assignments, Tutorials, Mock Tests
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	-	-
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	-	-
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	-	-
PO9	Individual and team work : Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.	-	-
PO10	Communication : Communicate effectively on complex engineering activities with the engineeringcommunity and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	-	-
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	-	-
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage inindependent and life-long	-	-

Program	1 Outcomes (PO)	Level	Proficiency assessed by
	learning in the broadest context of technological change.		

How Program Specific Outcomes are Assessed:

Program Specific Outcomes (PSO)	Level	Proficiency assessed by
PSO1 Software Development and Research Ability: Ability to under the structure and development methodologies of software system Possess professional skills and knowledge of software design p Familiarity and practical competence with a broad range of programming language and open source platforms. Use knowled various domains to identify research gaps and hence to provide to new ideas and innovations.	erstand ms. rocess. 3 edge in solution	Assignments, Tutorials, Mock Tests
PSO2 Foundation of mathematical concepts: Ability to apply the ad knowledge of basic skills, principles of computing, mathematic foundations, algorithmic principles, modeling and design of com- based systems in solving real world engineering Problems.	cquired al 2 mputer- 2	Assignments, Tutorials
PSO3 Successful Career: Ability to update knowledge continuously tools like Rational Rose, MATLAB, Argo UML, R Language a technologies like Storage, Computing, Communication to meet industry requirements in creating innovative career paths for imemployment and for higher studies.	in the nd the 3 nmediate	Assignments, Tutorials, Mock Tests

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

-: None

Course Content:

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design With the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical data base design, introduction to views, destroying/altering tables and views. Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: Queries, Constraints, Triggers: form of basic SQL query, UNION, INTERSECT, and EXCEPT,Nested Queries, aggregation operators, NULL values, complex integrity constraints in SQL, triggers

and active data bases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, FIRST, SECOND, THIRD normal forms, BCNF, lossless join decomposition, multi-valued dependencies, FOURTH normal form, FIFTH normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log–Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations, Indexes and Performance Tuning, Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

Text Books

1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata McGraw Hill 3rd Edition

2. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.

Reference Books

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7thEdition.
- 2. Fundamentals of Database Systems, ElmasriNavrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education

COURSE PLAN (WEEK-WISE):

Lecture No.	Unit No.	Topics to be covered	Content to be covered under each topic	Link for PDF	LINK TOT Small Projects/ Numericals(if	Course learning outcomes	Teaching Methodology	Reference	
1		Unit1:A Historical Perspective	 Basics of DBMS Evolution 	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To understand the A Historical Perspective	PPT	Database Managem ent Systems, Raghura ma Krishnan, Johannes Gehrke, Tata McGraw Hill 3rd Edition,	
2	1	File Systems versus a DBMS, the Data Mode	TypesMethod	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PlJ xOAIS LBfcPS	To understand the File Systems versus a DBMS, the Data Mode	PPT		
3		Data Independence	Data TypesCategory	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PlJ xOAIS LBfcPS	To study Data Independenc e	PPT		
4	_		Structure of a DBMS	Structure of data typesEntry	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa Jg4IL	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum	To study various Structure of a DBMS	PPT	

			I	1		
			5vDwt2y	xxZ7PlJ		
			Ue	XOAIS		
				LBtcPS		
5	Database Design and ER Diagrams	 Data independence Diagram 	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PlJ xOAIS	To understand Structure of a DBMS	Chalk and Talk
8	Entities, Attributes, and Entity	 Attributes Entry in DBMS 	Ue <u>https://dri</u> <u>ve.google</u> <u>.com/driv</u> <u>e/u/4/fold</u> <u>ers/1uYE</u> <u>Ad3IwN</u> <u>mWrtWB</u> <u>Oa_Jg4IL</u> <u>5vDwt2y</u> <u>Ue</u>	LBfcPS https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To evaluate Entities, Attributes, and Entity DBMS	Chalk and Talk
9	Sets, Relationships and Relationship Sets	 Relational database Types 	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To understand Sets, Relationships and Relationship Sets DBMS	PPT
10	Instruction formats	 Format of DBMS Types 	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To understand and analyze the Instruction formats	PPT

	ER Model,		Ad3IwN mWrtWB Oa_Jg4IL	VxB2r7 MMum	Features of the ER Model			
			5vDwt2y Ue	xxZ/PIJ xOAIS LBfcPS				
12	Conceptual Design	 Design process Method 	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To evaluateConc eptual Design	PPT		
13	With the ER Model	 ER Model Description of model 	https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To understand With the ER Model	PPT		
14	Bridge Class-I		https://dri ve.google .com/driv e/u/4/fold ers/1uYE Ad3IwN mWrtWB Oa_Jg4IL 5vDwt2y Ue	https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS		PPT		
15	MOCK TEST	-1						
16	Student Preser	Student Presentations						

17		Student Presen	itations					
18		Unit2:Integrit y constraint over relations	 Constraint types Category 	https://dri ve.google .com/driv e/u/4/fold ers/1YyB e3uyzJXj JEX5kyu xqbesZl WunNjak	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1 3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To Analyze Integrity constraint over relations	PPT	
19	2	enforcing integrity constraints	Data TypesMethod	https://dri ve.google .com/driv e/u/4/fold ers/1YyB e3uyzJXj JEX5kyu xqbesZl WunNjak	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To Analyze enforcing integrity constraints	PPT	Database Managem ent
20		querying relational data		https://dri ve.google .com/driv e/u/4/fold ers/1YyB e3uyzJXj JEX5kyu xqbesZl WunNjak	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To Understand the querying relational data	PPT	Systems, Raghura ma Krishnan, Johannes Gehrke, Tata McGraw Hill 3rd Edition
21		logical data base design,	Data TypesMethod	https://dri ve.google .com/driv e/u/4/fold ers/1YyB e3uyzJXj	https:// drive.g oogle.c om/dri ve/u/4/f olders/	To Understand the logical data base design,	Chalk and Talk	

			1	1		1	1
			JEX5kyu	1_3djV			
			xqbesZl	xB2r7			
			WunNjak	MMum			
				xxZ7Pl			
				JxOAI			
				SLBfcP			
				S			
		• Views type		https://d			
		 Description 	https://dri	rive.goo			
		1	ve.google	gle.com			
			.com/driv	/drive/u	То		
			e/u/4/fold	/4/folde	Understand		
22	introduction to		ers/1YyB	rs/1 3dj	the	PPT	
	views		e3uyzJXj	VxB2r7	introduction		
			JEX5kvu	MMum	to views		
			xqbesZl	xxZ7PlJ			
			WunNiak	XOAIS			
			j	LBfcPS			
		• Table types		https://d			-
		Category	https://dri	rive goo			
		Category	ve google	gle com			
			com/driv	/drive/11	To know		
	destroving/alte		e/u/4/fold	/4/folde	how to write		
23	ring tables and		ers/1VvB	$r_{\rm s}/1$ 3di	destroying/al	ррт	
25	views			$V_{v}R2r7$	tering tables		
	VICWS		IEX5km	MMum	and views		
			JEA5Kyu	$\sqrt{77}$			
			WunNiek				
			vv uninjak	I RfoDS			
				https://d			-
		Catagory	https://dri	rivo goo			
		Callgory		ale com			
			ve.google	gie.com			
			$\frac{1}{2}$	/u1ve/u	Tolynow		
24	Relational		e/u/4/101d	$\frac{74}{10100}$	Dolotional	ррт	
24	Algebra			$15/1_30$	Alashes		
					Algeora		
			JEASKYU				
				XXZ/PIJ			
			wuninjak	XUAIS			
			1.44.5.5 // 1 *		T		-
	T1.	• Kelational	nups://dri	nttps://d	To evaluate		
		calculus	ve.google	rive.goo	I upie	C1 - 11	
25	relational	• Types	.com/driv	gle.com	relational	Chalk	
25	Calculus,Dom		e/u/4/told	/drive/u	Calculus,Do	and	
	ain relational		ers/1YyB	/4/tolde	main	Talk	
	calculus		e3uyzJXj	$rs/1_3dj$	relational		
			JEX5kyu	VxB2r7	calculus		

26	UNIT 3 :form of basic SQL query, UNION, INTERSECT, and EXCEPT	 SQL types Category 	xqbesZl WunNjak https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	MMum xxZ7PIJ xOAIS LBfcPS https://d rive.goo gle.com /drive/u /4/folde rs/1_3dj VxB2r7 MMum xxZ7PIJ xOAIS LBfcPS	To evaluate form of basic SQL query, UNION, INTERSECT , and EXCEPT	PPT	
27	Bridge Class-	II					
28	Student Prese	ntations		1	1	1	
29	Nested Queries	 NEted queries types Category 	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	Understand Nested Queries	PPT	
30	aggregation operators,	 Operator types Category 	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To know how to aggregation operators	РРТ	The 8051 Microcont roller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed.

31		NULL values, complex integrity constraints in SQL	SQL typesCategory	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To know how to NULL values, complex integrity constraints in SQL	PPT	
32		triggers and active data bases	Data typeModels	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1 3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To understand triggers and active data bases	Chalk and Talk	
33	3	Problems caused by redundancy, decomposition s	 Redundancy types Category 	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To understandPr oblems caused by redundancy, decompositio ns Communicati on Standards	PPT	
34		problems related to decomposition , reasoning about functional dependencies	Decomposition methodCategory	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7	To understand the Problems caused by redundancy, decompositio ns	PPT	

			JbK_NJT	MMum xxZ7Pl JxOAI SLBfcP S			
35	FIRST, SECOND, THIRD normal forms	• Views type Description	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To understand the FIRST, SECOND, THIRD normal forms	PPT	
36	BCNF, lossless join decomposition	• Views type Description	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To understand Inter BCNF, lossless join decompositio n	PPT	
37	multi-valued dependencies	• Views type Description	https://dri ve.google .com/driv e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To understand multi-valued dependencies	Chalk and Talk	
38	FOURTH normal form, FIFTH normal	• Views type Description	https://dri ve.google .com/driv	https:// drive.g oogle.c	To understand the FOURTH	Chalk and Talk	Database System Concepts,

		form.		e/u/4/fold ers/1y_r9 eyGL8tD DvctcRw xSPZy2q JbK_NJT	om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	normal form, FIFTH normal form		Silbersch atz, Korth, McGraw hill, V edition
39		Unit -4 Transaction Concept, Transaction State	 Transaction type States 	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB IP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To understand the Transaction Concept, Transaction State	PPT	
40		Implementatio n of Atomicity and Durability	• Views type Description	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB lP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To understand the Implementati on of Atomicity and Durability	PPT	
41	4	Concurrent Executions, Serializability, Recoverability , Implementatio n of Isolation	Isolation processMethod	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB IP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI	To Analyze the Concurrent Executions, Serializabilit y, Recoverabilit y, Implementati on of Isolation	PPT	

					SLBfcP S			
42	Te	esting for erializability	 Testing method Types 	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB lP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To know the Testing for serializability	PPT	
43	lo: co Co ex	oading onstants onditional xecution	Loading typesMethod	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB lP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	Understand loading constants Conditional execution	PPT	
44	y, Pr Ti Ba Pr	, Lock Based rotocols, imestamp ased rotocols		https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB lP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To Understand the y, Lock Based Protocols, Timestamp Based Protocols	PPT	
45	Va Ba Pr M Gi	alidation- ased rotocols, fultiple ranularity,	 Protocol model Types 	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ	https:// drive.g oogle.c om/dri ve/u/4/f	To Understand the Validation- Based	PPT	

		Recovery and Atomicity		tgHvDU BO2zD0 AhQPRB lP1HvSit ovw	olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	Protocols, Multiple Granularity, Recovery and Atomicity		
46		Log–Based Recovery, Recovery with Concurrent Transactions.	 Recovery method Types 	https://dri ve.google .com/driv e/u/4/fold ers/1WgZ tgHvDU BO2zD0 AhQPRB lP1HvSit ovw	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To Understand the Log–Based Recovery, Recovery with Concurrent Transactions	PPT	
47	5	UNIT 5 :Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexers	• Views type Description	https://dri ve.google .com/driv e/u/4/fold ers/1vXE nTPpLP8 ykbIxYH x8F- R8fs27V aJjy	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To Understand the Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexesr	Chalk and Talk	
48		Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organizations	Hash methodTypes	https://dri ve.google .com/driv e/u/4/fold ers/1vXE nTPpLP8 ykbIxYH x8F- R8fs27V aJjy	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP	To Understand the Index data Structures, Hash Based Indexing, Tree base Indexing, Comparison of File Organization	PPT	

				S	S		
49	Indexes and Performance Tuning, Intuitions for tree Indexes	Views typeDescription	https://dri ve.google .com/driv e/u/4/fold ers/1vXE nTPpLP8 ykbIxYH x8F- R8fs27V aJjy	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7PI JxOAI SLBfcP S	To Understand the Indexes and Performance Tuning, Intuitions for tree Indexes	PPT	
50	Indexed Sequential Access Methods (ISAM),	• Method of Sequential method	https://dri ve.google .com/driv e/u/4/fold ers/1vXE nTPpLP8 ykbIxYH x8F- R8fs27V aJjy	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1_3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To Understand the Indexed Sequential Access Methods (ISAM),	PPT	
51	B+ Trees: A Dynamic Index Structure	 Dynamic method Types 	https://dri ve.google .com/driv e/u/4/fold ers/1vXE nTPpLP8 ykbIxYH x8F- R8fs27V aJjy	https:// drive.g oogle.c om/dri ve/u/4/f olders/ 1 3djV xB2r7 MMum xxZ7Pl JxOAI SLBfcP S	To Understand the B+ Trees: A Dynamic Index Structure	PPT	
52	B+ Trees: A Dynamic Index Structure	 Dynamic index structure Types 	https://dri ve.google .com/driv e/u/4/fold ers/1vXE	https:// drive.g oogle.c om/dri ve/u/4/f	To Understand the B+ Trees: A Dynamic Index	PPT	

	nTPpLP8 ykbIxYH	olders/ 1_3djV xB2r7	Structure	
	X8F- R8fs27V aJiy	XB2r7 MMum xxZ7Pl		
	uujy	JxOAI SLBfcP		
		S		

4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.

5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.

6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

NPTEL Web Course:

http://onlinecourses.nptel.ac.in/noc18_cs15/preview http://nptel.ac.in/courses/106106093/ http://nptel.ac.in/courses/106106095/

NPTEL Video Course:

https://www.youtube.com/watch?v=EUzsy3W4I0g https://www.youtube.com/playlist?list=PL52484DF04A264E59

Relevant syllabus for GATE:

Databases: ER-model, Relational model (relational algebra, tuple calculus), Database design (integrity constraints, normal forms), Query languages (SQL), File structures (sequential files, indexing, B and B+ trees), Transactions and concurrency control.

Course Plan and Lesson Plan

Course outcomes

(Low)

(Medium)

e les			Program Outcomes (PO) Progra Outco							ram Sp omes (am Specific omes (PSO)				
Cours Outcom	P01	P02	PO3	P04	P05	P06	P07	PO8	909	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	3	2	2	2	3	-	2	-	2	3	-	1	2	3	2
CO2	2	3	3	2	3	-	2	-	2	3	-	2	2	3	2
CO3	2	2	3	2	3	-	2	-	2	3	-	2	2	2	3
CO4	3	2	3	2	2	-	2	-	2	2	-	2	2	3	2
CO5	2	2	3	2	3	-	2	-	2	2	-	2	2	2	3
	1: Slight 2: Moderate			3	: Sub High)	ıbstantial h) - : None									

Question Bank : Descriptive Questions: Short Answer Questions-Unit-1

S.N o	Question	Blooms Taxony level	Course outcome
1	Define the terms data and information?	REMEMBERING	1
2	Define (i) Database (ii)DBMS	REMEMBERING	1
3	List the advantages and applications of DBMS?	REMEMBERING	1
4	What are the disadvantages of file processing system?	REMEMBERING	1
5	Define instances and schemas of database?	REMEMBERING	1
6	What is data model? List the types of data models?	REMEMBERING	1
7	Discuss about Data Definition language?	CREATING	6
8	Discuss about Data Manipulation language?	CREATING	6
9	What is data Abstraction? Give the levels of data abstraction?	REMEMBERING	1
10	Who is DBA? What are the responsibilities of DBA?	REMEMBERING	1
11	Discuss Data Independence?	CREATING	6
12	What is an entity relationship model?	REMEMBERING	1
13	Define (i) Entity (ii) Attribute	REMEMBERING	1
14	Define Relationship and Relationship set?	REMEMBERING	1
15	What are key constraint and participating constraints?	REMEMBERING	1
16	Define weak entity and strong entity sets?	REMEMBERING	1
17	Define relation, relation instance and relation schema.	REMEMBERING	1
18	Define i) super key ii)candidate key iii) primary key	REMEMBERING	1
19	Explain the use of foreign key constraint?	UNDRESTANDIN G	2
20	Define the terms arity and cardinality of relation?	REMEMBERING	1

21	What are domain constraints	REMEMBERING	1
22	Explain about querying relational data?	UNDRESTANDIN G	2
23	Define views?	REMEMBERING	1
24	Discuss how can you change the data in the table?	CREATING	6
25	List various types of attributes?	REMEMBERING	1
26	Discuss how can you alter and destroy tables?	CREATING	6
27	Explain the use of null values?	UNDRESTANDIN G	2

Long Answer Questions-

S. No	Question	Blooms Taxony level	Course outcome
1	Compare and Contrast file Systems with database system?	UNDRESTANDING	2
2	Define Data Abstraction and discuss levels of Abstraction?	REMEMBERING	1
3	Discuss about different types of Data models?	CREATING	6
4	Describe the architecture of DBMS?	CREATING	6
5	Discuss additional features of the ER-Models?	CREATING	6
6	Discuss about the Conceptual Design with the ER-Model?	CREATING	6
7	Write about views and updates on views?	REMEMBERING	1
8	Explain different types of database users and write the functions of DBA?	UNDRESTANDING	2
9	Explain about different types of integrity constraints?	UNDRESTANDING	2
10	Discuss about the logical database Design?	CREATING	6
11	Distinguish strong entity set with weak entity set? Draw an ER diagram to illustrate Weak entity set?	UNDRESTANDING	2
12	Explain how the integrity constraints are specified and enforces?	UNDRESTANDING	2
13	Explain in detail about views?	UNDRESTANDING	2
Unit Sho	-2 rt Answer Questions-		

Short	Short Answer Questions-								
S.N	Question	Blooms Taxony level	Course						
0	Question	Dioonis Taxony level	outcome						

1	Define relational database query?	REMEMBERING	1
2	Explain different types of query languages?	UNDRESTANDING	2
3	Explain about relational algebra?	UNDRESTANDING	2
	State about SELECT operation in Relational algebra?	ANALYZE	4
5	State about PROJECT operation in Relational algebra?	ANALYZE	4
6	Explain about set operations?	UNDRESTANDING	2
7	Discuss the use of rename operation?	CREATING	6
8	Define join ? Explain different join operations?	REMEMBERING	1
9	Illustrate division operation?	UNDRESTANDING	2
10	Explain about tuple relational calculus?	UNDRESTANDING	2
11	Explain about Domain relational calculus?	UNDRESTANDING	2
12	Discuss about the expressive power of relational algebra and calculus?	CREATING	6
13	. Discuss the basic form of SQL query?	CREATING	6
14	Explain the working of union, intersection and except operations?	UNDRESTANDING	2
15	Define nested queries?	REMEMBERING	1
16	Define correlated nested queries?	REMEMBERING	1
17	Explain Aggregate Functions?	UNDRESTANDING	2
18	What is the use of groupby and having clauses?	REMEMBERING	1
19	Define Null Values?	REMEMBERING	1
20	Define tuple variable with its syntax?	REMEMBERING	1
21	Define outer join? Explain its types?	REMEMBERING	1
22	Explain how to create new domain?	UNDRESTANDING	2
23	Define Assertions?	REMEMBERING	1
24	. Discuss about trigger?	CREATING	6

25	Demonstrate how to add a NOT NULL column to a table?	UNDRESTANDING	2
26	Write a TRC query to find the names of sailors who have reserved boat103?	REMEMBERING	1
27	Write a DRC query to find the names of sailors who have reserved red boat?	REMEMBERING	1
Long	g Answer Questions-		
S. No	Question	Blooms Taxony level	Course outcome
1	Illustrate different operations in Relational algebra with an example?	UNDRESTANDING	2
2	Define Join? Explain different types of joins?	REMEMBERING	1
3	Discuss about Relational calculus in detail?	CREATING	6
4	Define trigger and explain its three parts? Differentiate row level and statement level triggers?	REMEMBERING	1
5	Illustrate Group by and having clauses with examples?	UNDRESTANDING	2
6	Discuss about Complex integrity constraints in SQL?	CREATING	6
7	Define null value? Describe the effect of null values in database?	REMEMBERING	1
8	Discuss different types of aggregate operators with examples in SQL?	CREATING	6
9	Define a nested query?	REMEMBERING	1
10	Write a nested query to find the names of sailors who have reserved both a red and green boat?	REMEMBERING	1
11	Write a nested query to find the names of sailors who have reserved all boats?	REMEMBERING	1

Unit-3

Short Answer Questions-

S.No	Question	Question Blooms Taxony level	
1	Define redundancy?	REMEMBERING	1
2	Define functional dependency?	REMEMBERING	1
3	Explain the problems with Redundancy?	UNDRESTANDING	2
4	What is decomposition? Explain the properties of Decomposition?	REMEMBERING	1
5	Discuss normalization?	CREATING	6
6	Illustrate functional dependency with example?	UNDRESTANDING	2

7	Illustrate fully functional dependency with example?	UNDRESTANDING	2
8	Demonstrate transitive dependency? Give an example?	UNDRESTANDING	2
9	Define First Normal Form?	REMEMBERING	1
10	Define Second Normal Form?	REMEMBERING	1
11	Define Third Normal Form?	REMEMBERING	1
12	Explain about Loss Less Join Decomposition?	UNDRESTANDING	2
13	Describe Dependency Preserving Decomposition?	CREATING	6
14	What is multi valued Dependency?	REMEMBERING	1
15	Define Fourth Normal Form?	REMEMBERING	1
16	Define Join Dependency?	REMEMBERING	1
17	Define BCNF?	REMEMBERING	1
18	Explain Fifth Normal Form?	UNDRESTANDING	2
19	Explain about Inclusion Dependency?	UNDRESTANDING	2

Long Answer Questions-

S. No	Question	Blooms Taxony level	Course outcom
1	Illustrate redundancy and the problems that it can cause	UNDRESTANDING	2
2	Define decomposition and how does it address redundancy? Discuss the problems that may be caused by the use of decompositions?	REMEMBERING	1
3	Define functional dependencies. How are primary keys related to FD's?	REMEMBERING	1
4	Define normalization? Explain 1NF,2NF,3NF normal forms	REMEMBERING	1
5	Compare and contrast BCNF with 3NF?	UNDRESTANDING	2
6	Describe properties of decompositions	CREATING	6

Unit-4	
Short	Answer Questions-

S. No	Question	Blooms Taxony level	Course outcome
1	Define a Transaction? List the properties of transaction	REMEMBERI NG	1
2	Discuss different phases(states) of transaction?	CREATING	6
3	What is shadow copy technique?	REMEMBERI NG	1
4	List the advantages of concurrent execution?	REMEMBERI NG	1
5	Define Schedule? What is a serial schedule?	REMEMBERI NG	1
6	Discuss the Procedure to test Serializability?	CREATING	6
7	Demonstrate Conflict Serializability?	UNDRESTAN DING	2
8	Discuss View Serializability?	CREATING	6
9	Discuss recoverable schedules?	CREATING	6
10	Discuss cascade less schedules?	CREATING	6
11	Explain the procedure to test for serializability?	UNDRESTAN DING	2
12	Explain about different types of locks?	UNDRESTAN DING	2
13	Define Deadlock?	REMEMBERI NG	1
14	Explain about locking protocols?	UNDRESTAN DING	2
15	Define Two Phase locking protocol?	REMEMBERI NG	1
16	Demonstrate the implementation of Isolation?	UNDRESTAN DING	2
17	Explain how the locks are implemented?	UNDRESTAN DING	2
18	Explain the rules of tree protocol?	UNDRESTAN DING	2
19	What is timestamp? Explain different timestamps used by a transaction? [L1:REMEMBERING]	REMEMBERI NG	1
20	Explain Thomas write rule? [L2: UNDRESTANDING]	UNDRESTAN DING	2

21	What are the phases of validation based protocol?	REMEMBERI NG	1
22	Explain different timestamps used by validation protocol?	UNDRESTAN DING	2
23	Define granularity?	REMEMBERI NG	1
24	Explain about ARIES?	UNDRESTAN DING	2
Lor	ng Answer Questions-		
S. No	Question	Blooms Taxony level	Course outcome
1	Explain ACID properties and illustrate them through examples?	UNDRESTAN DING	2
2	Discuss How do you implement Atomicity and Durability	CREATING	6
3	Illustrate Concurrent execution of transaction with examples	UNDRESTAN DING	2
4	Discuss Serializability in detail?	CREATING	6
5	Discuss two phase locking protocol and strict two phase locking protocols? [L6: CREATING]	CREATING	6
6	Describe Times tamp based locking protocols?	CREATING	6
7	Describe Validation-based locking protocols?	CREATING	6
8	Discuss in detail Multiple Granularity?	CREATING	6
9	Explain in detail storage structure	UNDRESTAN DING	2
10	Discuss how do you recover from failure?	CREATING	6
11	Explain Buffer Management?	UNDRESTAN DING	2
12	Explain different types of advanced recovery techniques	UNDRESTAN DING	2
13	Write in detail about Remote Backup systems?	REMEMBERI NG	1
Uni	it-5		

Short Answer Questions-

S.N o	Question	Blooms Taxony level	Course outcome
1	Discuss about data on External storage?	CREATING	6

1				,
2	What is indexing and what are the different kinds of indexing?	REN	MEMBERING	1
3	Explain Clustered Indexes?	UN	DRESTANDI NG	2
4	Discuss the Primary and Secondary indexes?	REN	MEMBERING	1
5	Define Tree Indexing?	REN	MEMBERING	1
6	Explain Hash based Indexing?	UN	DRESTANDI NG	2
7	Compare different file organizations?	UN	DRESTANDI NG	2
8	Discuss the intuition for Tree Indexes?	C	CREATING	6
9	Define Indexed Sequential Access Method?	REN	MEMBERING	1
10	Discuss about Overflow pages and Locking considerations of ISAM?	C	CREATING	6
11	Discuss the Cost model of Heap files, Sorted files and Clustered files?	C	CREATING	6
12	Explain the structure of B+ tree?	UN	DRESTANDI NG	2
13	Describe how the insert and delete operations are performed in B+ tree?	C	CREATING	6
14	Explain how search is performed in B+ tree?	UNDRESTANDI NG		2
15	Define static Hashing?	REMEMBERING		1
16	Explain extendible hashing?	UN	DRESTANDI NG	2
17	Define linear hashing?	REN	MEMBERING	1
18	Differentiate between linear and extensible hashing?	UNDRESTANDI NG		2
Lor	g Answer Questions-		·	
S.N	Question		Blooms Taxony	Course
0	Question		level	outcome
1	Write in detail about hash based indexing and Tree based indexin [L1:REMEMBERING]	g	REMEMBERI NG	1
2	Compare I/O costs for all file organizations		UNDRESTAN DING	2
3	Explain in detail about ISAM		UNDRESTAN DING	2
4	Explain about B+ tree index file?		UNDRESTAN DING	2

5	Demonstrate searching a given element in B+ trees? Explain with example?	UNDRESTAN DING	2
6	Illustrate insertion of an element in B+ Tree with example	UNDRESTAN DING	2
7	Illustrate deletion of an element in B+ Tree with example	UNDRESTAN DING	2
8	Write in detail about Static Hashing	UNDRESTAN DING	2
9	Explain in detail about Extendible hashing	UNDRESTAN DING	2
10	Explain in detail about Linear hashing	UNDRESTAN DING	2
11	Compare and contrast Extendible hashing With Linear hashing	UNDRESTAN DING	2

Objective-Type Questions JNTUH

- 1) In the relational modes, cardinality is termed as:
 - (A) Number of tuples. (B) Number of attributes.
 - (C) Number of tables. (D) Number of constraints.
 - Ans: A
- 2) Relational calculus is a
 - (A) Procedural language. (B) Non- Procedural language.
 - (C) Data definition language. (D) High level language.

Ans: B

- 3) The view of total database content is
 - (A) Conceptual view. (B) Internal view.
 - (C) External view. (D) Physical View.

Ans: A

- 4) Cartesian product in relational algebra is
 - (A) a Unary operator. (B) a Binary operator.
 - (C) a Ternary operator. (D) not Defined.

Ans: B Cartesian product in relational algebra is a binary operator.(It requires two operands.

e.g., P X Q)

- 5) DML is provided for
 - (A) Description of logical structure of database.
 - (B) Addition of new structures in the database system.
 - (C) Manipulation & processing of database.
 - (D) Definition of physical structure of database system.

Ans: C DML is provided for manipulation & processing of database.Data stored in the database is processed or manipulated using data manipulation language commands as its name)

- 6) 'AS' clause is used in SQL for
 - (A) Selection operation. (B) Rename operation.
 - (C) Join operation. (D) Projection operation.

Ans: B 'AS' clause is used in SQL for rename operation. (e.g.,

SELI	CCT ENO AS EMPLOYEE_NO FROM EMP)
7) O	DBC stands for
	(A) Object Database Connectivity.(B) Oral Database Connectivity.
	(C) Oracle Database Connectivity.(D) Open Database Connectivity.
	Ans: D
8) A	rchitecture of the database can be viewed as
	(A) two levels. (B) four levels.(C) three levels. (D) one level.
	Ans: C
In	a relational model, relations are termed as
	a) Tuples. (B) Attributes(C) Tables. (D) Rows.
10) TI	ne database schema is written in
	(A) HLL (B) DML(C) DDL (D) DCL
	Ans: C
11) In	the architecture of a database system external level is the
	(A) physical level. (B) logical level.(C) conceptual level (D) view level.
	Ans: D
12) A	n entity set that does not have sufficient attributes to form a primary key is a
	(A) strong entity set. (B) weak entity set.
	(C) simple entity set. (D) primary entity set.
	Ans: B
13) In	a Hierarchical model records are organized as
	(A) Graph. (B) List.(C) Links. (D) Tree.
	Ans: D
14) In	an E-R diagram attributes are represented by
	(A) rectangle. (B) square.(C) ellipse. (D) triangle.
	Ans: C
15) In	case of entity integrity, the primary key may be
	(A) not Null (B) Null(C) both Null & not Null. (D) any value.
Ans:	Α
16) In	tuple relational calculus P1 ®P2 is equivalent to
/	(Å) ¬P1 Ú P2 (B) P1 Ú P2(C) P1 Ù P2 (D) P1 Ù ¬P2
	Ans: A In tuple relational calculus P1 P2 is equivalent to ¬P1 Ú P2.
(The	logical implication expression A B, meaning if A then B, is equivalent to $\neg A U B$)
Ì7) T	he language used in application programs to request data from the DBMS is referred to as
,	(A) DML (B) DDL(C) VDL (D) SDL

Ans: A 18) A logical schema

(A) is the entire database.

(B) is a standard way of organizing information into accessible parts.

(C) describes how data is actually stored on disk.

(D) both (A) and (C)

Ans: A

19) In a relation

(A) Ordering of rows is immaterial

(B) No two rows are identical

(C) (A) and (B) both are true

the

(D) None of these.

Ans: C

- 20) Which of the following is correct:
 - (A) a SQL query automatically eliminates duplicates.
 - (B) SQL permits attribute names to be repeated in the same relation.
 - (C) a SQL query will not work if there are no indexes on the relations
 - (D) None of these

Ans: D

21) It is better to use files than a DBMS when there are

- (A) Stringent real-time requirements.
- (B) Multiple users wish to access the data.
- (C) Complex relationships among data.
- (D) All of the above.

Ans: B

- 22) The conceptual model is
 - (A) dependent on hardware.
 - (B) dependent on software.
 - (C) dependent on both hardware and software .
 - (D) independent of both hardware and software.

Ans: D

- 23) What is a relationship called when it is maintained between two entities?
 - (A) Unary (B) Binary(C) Ternary (D) Quaternary

Ans: B

24) Which of the following operation is used if we are interested in only certain columns of atable? (A) PROJECTION (B) SELECTION(C) UNION (D) JOIN

Ans: A

25) Which of the following is a legal expression in SQL?

- (A) SELECT NULL FROM EMPLOYEE;
- (B) SELECT NAME FROM EMPLOYEE;
- (C) SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;
- (D) None of the above

Ans: B

- 26) The users who use easy-to-use menu are called
 - (A) Sophisticated end users. (B) Naïve users.
 - (C) Stand-alone users. (D) Casual end users.

Ans: B

- 27) Which database level is closest to the users?
 - (A) External (B) Internal(C) Physical (D) Conceptual

Ans: A

28) Which are the two ways in which entities can participate in a relationship?

- (A) Passive and active (B) Total and partial
- (C) Simple and Complex (D) All of the above

Ans: B

29) The result of the UNION operation between R1 and R2 is a relation that includes

- (A) all the tuples of R1 $\,$
- (B) all the tuples of R2
- (C) all the tuples of R1 and R2

(D) all the tuples of R1 and R2 which have common columns

Ans: D

30) Which of the following is a comparison operator in SQL?

(A) = (B) LIKE(C) BETWEEN (D) All of the above

Ans: D

31) A set of possible data values is called

(A) attribute. (B) degree.(C) tuple. (D) domain.

Ans: D

32) Which of the operations constitute a basic set of operations for manipulating relationaldata?

(A) Predicate calculus (B) Relational calculus

(C) Relational algebra (D) None of the above

Ans:C

- 33) Which of the following is another name for weak entity?
 - (A) Child (B) Owner(C) Dominant (D) All of the above

Ans: A

34) Which of the following database object does not physically exist?

(A) base table (B) index(C) view (D) none of the above

Ans: C

GATE

- 35) Consider a relational table with a single record for each registered student with the following attributes: Registration_number: Unique registration number for each registered student UID: Unique identity number at the national level for each citizen BankAccount_number: Unique account number at the bank. A student can have multiple accounts or join accounts. This attribute stores the primary account number. Name: Name of the student Hostel_room: room number of the hostelWhich of the following option is incorrect ? A.Bank account number is candidate key
 - B.Registration Number can be a Primary Key
 - C.UID is Primary Key if students are from the same country.
 - D. If S is a superkey such that S UID is Null then S UID is also a super key
- 36) Consider the following schedules involving two transactions. Which one of the following
statementsistrue?[GATE2007]

B)both s1 and s2 are conflict serializable

C)s1 is conflict serializable and s2 is not conflict serialazable

D) both s1 and s2 are not conflict serializable

- 37) Let E1 and E2 be two entities in an E/R diagram with simple single valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one to many and R2 is many to many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model? [GATE2005] A)2 B) 4 C) 5 D)3
- 38) The order of an internal node in a B+ tree index is the maximum number of children it can have . Suppose that a child pointer takes 6 bytes, the search filed value takes 14 bytes, and the block size is 512 bytes. What is the order of the internal node ? [GATE 2004] A)27 B) 24 C) 25 D)26

Websites Addresses:

- 1) <u>http://nptel.iitm.ac.in/video.php?subjectId=106106093</u>
- 2) <u>http://www.sqlcourse.com/index.html</u>
- 3) <u>http://www.tutorialspoint.com/sql/</u>

Expert details:

- 1) Dr. S. Srinath working in IIIT Bangalore
- 2) Prof. D. Janaki Ram working in IIT Madras

Journals (National & International):

- 1) International Journal of Intelligent Information and Database Systems (<u>http://www.inderscience.com/jhome.php?jcode=ijiids</u>)
- 2) The Journal of Biological Databases and Curation (<u>http://database.oxfordjournals.org/content/current</u>)

List of topics for student's seminar s:

- 1) Database Management System purpose and applications
- 2) Database Users and Administrators
- 3) History of Database Systems
- 4) Data Models
- 5) File System vs DBMS
- 6) Form of basic SQL query with examples
- 7) Schema Refinement
- 8) Problems caused by Redundancy
- 9) Normalization and Normal Forms
- 10) Transaction Management
- 11) TransactionStates and properties
- 12) Concurrency control and execution

Case Studies / Small Projects:

- 1. Hospital Management System
- 2. Railway Reservation.