EC713PE: DIGITAL IMAGE PROCESSING COURSE PLANNER

I. COURSE OVERVIEW:

The students will be enlightened on digital image processing and to improve the appearance of an image to a human observer, to extract from image quantitative information that is not readily apparent to the eye and to calibrate an image in photometric or geometric terms.

Also the course provides an introduction to basic concepts and methodologies for digital image processing and to develop a foundation that can be used as the basis for further study and research in this field.

II. PREREQUISITE:

- 1. Basics of Mathematics
- 2. Signals and systems
- 3. Digital signal processing.

III. COURSE OBJECTIVE:

III. (COURSE OBJECTIVE:			
1.	This course provides an understand Image fundamentals an	d techniques		
2.	This course build various Image enhancement, resto techniques			
3.	This course develop various Image segmentation meth morphological Image Processing	ods, Wavelet based and		
4.	This course give the student a taste of the applications of th the subject. This will be achieved through the project and so sessions.			
5.	This course will introduce the students to some advance processing	ed topics in digital image		
IV	COURSE OUTCOME:			
S.No	Description	Bloom's Taxonomy Level		
1	Students will be able to Explain the basic elements and applications of image processing	Comprehension Understanding (Level 2)		
2	Students will be able to Analyze image sampling and quantization requirements and implications	Analyze (Level 4)		
3	Students will be able to Design and implement two- dimensional spatial and frequency filters for image enhancement	Synthesis (Level 5)		
4	Students will be able to Model and Demonstrate the image restoration problem in both time and frequency domains	Application (Level 3)		
5	Students will be able to Explain the image segmentation and image compression problem	Comprehension Understanding (Level 2)		
	Students will be able to Develop & Illustrate	Comprehension Understanding (Level 2)		

V HOW PROGRAM OUTCOMES ARE ASSESSED:

	PROGRAM OUTCOMES (PO)	LEVEL	PROFICIENCY ASSESSED BY
PO1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments
PO2:	Problem analysis : Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Exercises
PO3:	Design/development of solutions : Design solutions for complex engineering problems anddesign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	
PO4:	Conduct investigations of complex problems : Use research- based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	
PO5:	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Discussion, Seminars
PO6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	3	Design exercise, Prototypes
PO7:	Environment and sustainability : Understand the impact of the professional engineering solutions societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2	Exercise, Seminars, Discussions
PO8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2	Discussions
PO9:	Individual and team work : Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.	3	
PO10:	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2	Seminars, Discussions
PO11:	Project management and finance : Demonstrate knowledge and understanding of theengineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	3	Workshops, Prototypes

PO12:	Life-long learning: Recognize the need for, and have the		Seminar,
	preparation and ability to engage inindependent and life-long	3	Discussions
	learning in the broadest context of technological change.		

VI PROGRAM SPECIFIC OUTCOMES

	Program Specific Outcomes	LEVEL	PROFICIENCY ASSESSED BY
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	3	Lectures, Assignments
PSO2	Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	3	Lectures, Assignments
PSO3	Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.		Guest Lectures

VII SYLLABUS:

UNIT I:

Digital image fundamentals, Sampling and quantization, Relation ship between pixels;

Image Transforms: 2-D FFT, Properties, Walsh Transform, Hadamard Transform, Discrete Cosine Transform, Haar Transform, Slant Transform, Hotelling Transform

UNITV II:

Image Enhancement(spatial domain): Introduction, Enhancement in spatial domain, Enhancement through point operations, Types of point Operations, Histogram manipulation, Linear and non linear gray level transformation, local or neighborhood operation, median filter, spatial domain high pass filtering

Image Enhancement (Frequency Domain): Filtering in frequency domain, obtaining frequency domain filters from spatial filters, Generating filters directly in the frequency domain, Low pass (smoothing) filters in frequency domain, high pass (sharpening) filters in frequency domain **UNIT III:**

Image Restoration: Degradation model, Algebraic approach to restoration, inverse filtering, least mean square filters Constrained Least Squares Restoration, Interactive Restoration

UNIT IV:

Image Segmentaton: Detection of discontinuities, Edge linking and boundary detection, Thresholding, Region oriented segmentation.

Morphological Image Processing: Dilation, Structuring element decomposition, The strel function, Erosion, Combining Dilation and Erosion, Opening and closing, The hit or miss transformation,

UNIT V:

Image Compression:

Redundancies and their removal methods, Fidelity criteria, Image compression models, Source encoder and decoder, Error free compression, Lossy compression, Lossy and Lossless Predictive Coding, Transform Based Compression, JPEG 2000 Standards

TEXT BOOKS:

- 1. Digital Image Processing Rafael .C. Gonzalez, Richard E Woods, Pearson Education.
- 2. Digital Image Processing S. Jayaraman, S. Esakkirajan, T. Veerakumar

REFERENCE BOOKS:

- Digital Image Processing using MAT LAB, Rafael, C. Gonzalez, Richard E woods and Stens L Eddings, 2nd Edn, TMH,2010
- 2. Fundamentals of Digital Image Processing, A.K. Jain, PHI, 1989
- Digital Image Processing and Computer Vision, Somka, Hlavac, Boyle, Cengage Learning (India Edition) 2008
- 4. Introductory Computer vision Imaging Techniques and Solutions, Adrain Low, 2Nd Edn, 2008
- 5. Introduction to Image Processing & Analysis John C. Russ, J. Christian Russ, CRC Press, 2010
- 6. Wavelet Transforms (Introduction to theory and applications), Raghuveer M. Rao and Ajit S. Bopardikar, Pearson, 2000
- 7. Digital image processing with matlab&labview Vipulasingh

VIII COURSE PLAN (WEEK-WISE):

No.	·		Content to be covered under		Link for Small	a 50 S	lg ogy	ee
Lecture No.	Unit No.	Topics to be covered	each topic	Link for PDF	Projects/ Numericals(if any)	Course learning outcomes	Teaching Methodology	Reference
1		Digital Image Fundamental s	 Digital image definition, Fundamental steps in image processing. Representati on of Digital image 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about AI, Intelligent Agents	PPT, Pen, White Board	
2		Sampling and Quantization	 Definition Representati on Aliasing effect 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about AI, Intelligent Agents	PPT, Pen, White Board	Digita 1 Image Proces
3	I	Relationship between Pixels.	 Neighbor of a Pixel Connectivity Adjacency Path Distance MEasures 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Problem- Solving Agents, Searching for Solutions	PPT, Pen, White Board	sing - Rafael C. Gonzal ez, Richar d E.
4		2-D FFT, Properties,	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understand and compare various Search Strategies	PPT, Pen, White Board	Woods , 3rd Editio n, Pearso
5		Walsh Transform,	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understand and compare various Search Strategies	PPT, Pen, White Board	n, 2008
6		Hadamard Transform,	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understand and compare various Search Strategies	PPT, Pen, White Board	
7		Discrete Cosine Transform,	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4	Understand and compare various Search	PPT, Pen, White Board	

			Fisna?usp=sharing	Fisna?usp=sharing	Strategies	
	Haar	Definition, Properties	https://drive.googl e.com/drive/folder	https://drive.googl e.com/drive/folder	Understand and compare	PPT, Pen,
8	Transform,		s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	various Search Strategies	White Board
9	Slant Transform,	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understand and compare various Search Strategies	PPT, Pen, White Board
10	Hotelling Transform.	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understand and compare various Search Strategies	PPT, Pen, White Board
11	2D- Hadamard Transform	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Define Constraint Satisfaction Problems Understandin g Propagation, Backtracking Search for CSPs	PPT, Pen, White Board
12	Haar transform	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Define Constraint Satisfaction Problems Understandin g Propagation, Backtracking Search for CSPs	PPT, Pen, White Board
13	Slant Transform,	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyze transform	PPT, Pen, White Board
14	Hotelling transform and its significance	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	AnalyseHot elling	PPT, Pen, White Board
15	Discrete Cosine Transform	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN	Analyse Local search and structure	PPT, Pen, White

		(DCT)		LLFlacxdFmQgO4 Fisna?usp=sharing	LLFlacxdFmQgO4 Fisna?usp=sharing	of problems	Board	
16		Review of topics covered	• Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Local search and structure of problems	PPT, Pen, White Board	
17		Image Enhancement (spatial domain): Enhancement by point processing: simple intensity transformatio ns-contrast stretching, image negatives, log or power transformatio ns,	 Definition of Image Enhancemen t Types: Contrast Stretching Bit plane slicing Intensity level slicing Image negatives Log transformatio ns 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Local search and structure of problems	PPT, Pen, White Board	
18	II	Histogram Manipulation	 Histogram definition Histogram equalization Histogram specification and matching 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about Games, Optimal Decisions in Games, Analyse Pruning and decisions	PPT, Pen, White Board	Digital Image Proces sing -
19		Linear and Non – Linear Gray Level Transformati on	 Binary thresholding Gray level slicing 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about Games, Optimal Decisions in Games, Analyse Pruning and decisions	PPT, Pen, White Board	Rafael C. Gonzal ez, Richar d E. Woods , 3rd
20		, Local or Neighborhoo d criterion, Median Filter,	 Mask criterion for enhancement Median filter principle Example of median filtering 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about enhancement	PPT, Pen, White Board	Editio n, Pearso n, 2008

21	Spatial Domain High-Pass Filtering.	 Spatial domain low pass filtering, transfer function, images examples Spatial domain high pass filtering, transfer function, images examples High boost filtering 	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about Knowledge- Based Agents, The Wumpus World	PPT, Pen, White Board	
22	Image Enhanceme nt (Frequency Domain): Filtering in Frequency Domain, Low Pass (Smoothing)	Smoothing filtering principle Low pass filter mathematical formulation and representation	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about Knowledge- Based Agents, The Wumpus World	PPT, Pen, White Board	
23	High Pass (Sharpening) Filters in Frequency Domain.	sharpening filtering principle High pass filter mathematical formulation and representation Homomorphic filtering	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse First order logic	PPT, Pen, White Board	
24	Bridge class- I	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Unification and Lifting, Forward Chaining,	PPT, Pen, White Board	
25	Spatial Filtering: Smoothing filters, Sharpening filters	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing			

		~ • •			1	1		Ţ
26		Spatial Filtering: Smoothing filters, Sharpening filters contd	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Backward Chaining, Resolution	PPT, Pen, White Board	
27		Image Enhancement (Frequency Domain): Enhancement in frequency domain: Low pass filtering	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Apply Probability Notation	PPT, Pen, White Board	
28		Enhancement in frequency domain: Low pass filtering contd	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Apply Probability Notation	PPT, Pen, White Board	
29		High pass filtering, high boost filtering and unsharp masking	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know high pass filtering	PPT, Pen, White Board	Digital Image Proces sing - Rafael C.
30	II	Homomorphi c filtering	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Know about homomorphi c filtering	PPT, Pen, White Board	Gonzal ez, Richar d E. Woods
31		Bridge class- II	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Revise	PPT, Pen, White Board	, 3rd Editio n, Pearso n, 2008
32	III	Degradation model: degradation model for continuous functions, discrete formulation	Block diagram, principle Merits and demerits	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Evaluate Inference Using Full Joint Distributions	PPT, Pen, White Board	Digita l Image Proces sing - Rafael C. Gonzal
33		Algebraic approach to restoration: Unconstraine d Restoration	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Evaluate Inference Using Full Joint Distributions	PPT, Pen, White Board	ez, Richar d E. Woods , 3rd

			Definition,	https://drive.googl	https://drive.googl	Evaluate		Editio
			Properties	e.com/drive/folder	e.com/drive/folder	Inference	PPT,	n,
34		Constrained	Topetties	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Using Full	Pen,	Pearso
54		Restoration		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Joint	White	
				Fisna?usp=sharing	Fisna?usp=sharing	Distributions	Board	n, 2008
		Inverse	Definition,	risna:usp—snaring	risna:usp-snaring	Distributions		2008
		filtering:	Properties					
		Formulation,	rioperties	https://drive.googl	https://drive.googl	Evaluate	PPT,	
		Removal of		e.com/drive/folder	e.com/drive/folder	Inference	,	
35		Blur Caused		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Using Full	Pen, White	
				LLFlacxdFmQgO4	LLFlacxdFmQgO4	Joint	Board	
		by Uniform Linear		Fisna?usp=sharing	Fisna?usp=sharing	Distributions	Board	
		Motion						
		Within	Definition,	https://drive.googl	https://drive.googl			-
		Inverse	Properties	e.com/drive/folder	e.com/drive/folder		PPT,	
36		filtering	1 isperies	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Evaluate	Pen,	
		contd		LLFlacxdFmQgO4	LLFlacxdFmQgO4	inverse	White	
				Fisna?usp=sharing	Fisna?usp=sharing		Board	
			Definition,	https://drive.googl	https://drive.googl	Evaluate		1
		Least Mean	Properties	e.com/drive/folder	e.com/drive/folder	Inference	PPT,	
37		square	ropences	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Using Full	Pen,	
57		(Wiener)		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Joint	White	
		filter		Fisna?usp=sharing	Fisna?usp=sharing	Distributions	Board	
		<u> </u>	Definition,	https://drive.googl	https://drive.googl	Evaluate	_	1
		Constrained	Properties	e.com/drive/folder	e.com/drive/folder	Inference	PPT,	
38		Least squares		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Using Full	Pen,	
		Restoration		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Joint	White	
				Fisna?usp=sharing	Fisna?usp=sharing	Distributions	Board	
				https://drive.googl	https://drive.googl		DDT	1
		.		e.com/drive/folder	e.com/drive/folder		PPT,	
39		Interactive		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN		Pen,	
		Restoration		LLFlacxdFmQgO4	LLFlacxdFmQgO4		White	
				Fisna?usp=sharing	Fisna?usp=sharing		Board	
			Block diagram,			Understandin		1
			principle	https://drive.googl	https://drive.googl	g Learning	PPT,	
		Interactive	Merits and	e.com/drive/folder	e.com/drive/folder	Understand	Pen,	
40		Restoration	demerits	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Learning	White	
		contd		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Decision	Board	
				Fisna?usp=sharing	Fisna?usp=sharing	Trees.		
		Detection of	Block diagram,					
		discontinuitie	principle	https://drive.googl	https://drive.googl	Understandin		
		s: point	Merits and	e.com/drive/folder	e.com/drive/folder	g Learning	PPT,	
41		detection,	demerits	s/1ekC5jtUI4budN		Understand	Pen,	
41		line		LLFlacxdFmQgO4	s/1ekC5jtUI4budN	Learning	White	
	IV	detection,		÷e	LLFlacxdFmQgO4	Decision	Board	
	11	edge		Fisna?usp=sharing	Fisna?usp=sharing	Trees.		
		detection						
		Edge	Definition,	https://drive.googl	https://drive.googl		PPT,	
42		detection	Properties	e.com/drive/folder	e.com/drive/folder		Pen,	
72		contd		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN		White	
		Conta		LLFlacxdFmQgO4	LLFlacxdFmQgO4		Board	

			Fisna?usp=sharing	Fisna?usp=sharing			
43	Edge linking and Boundary	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN		PPT, Pen,	
	detection: Local processing		LLFlacxdFmQgO4 Fisna?usp=sharing	LLFlacxdFmQgO4 Fisna?usp=sharing		White Board	
44		Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board	
45	Global processing via Hough transform	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Learning Using Relevance Information, Apply Inductive Logic Programmin g, Apply Knowledge in Learning, Explanation- Based	PPT, Pen, White Board	
46	Global Processing via Graph theoretic approach	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Learning Using Relevance Information, Apply Inductive Logic Programmin g, Apply Knowledge in Learning, Explanation- Based	PPT, Pen, White Board	Digita l Image Proces sing - Rafael C. Gonzal ez, Richar d E. Woods
47	Thresholding methods	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board	, 3rd Editio n, Pearso
48	Region based segmentation : basic formulation	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4	Analyse Learning Using Relevance	PPT, Pen, White Board	n, 2008

			D ' 0 1 '	F' 0 1 '	T C		-
			Fisna?usp=sharing	Fisna?usp=sharing	Information, Apply Inductive Logic Programmin g, Apply Knowledge in Learning, Explanation- Based		
49	Region growing by pixel aggregation	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Learning Using Relevance Information, Apply Inductive Logic Programmin g, Apply Knowledge in Learning, Explanation- Based	PPT, Pen, White Board	
50	Region splitting and merging	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board	
51	Morphologic al Image processing: Dilation and Erosion approaches salient features	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board	
52	Opening and closing operations	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Analyse Learning Using Relevance Information, Apply Inductive Logic Programmin g, Apply Knowledge in Learning,	PPT, Pen, White Board	

						Explanation- Based	
53		Hit or Miss transformatio ns	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board
54		Bridge Class – VI		https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board
55		Redundancie s and their removal methods: coding redundancy, interpixel redundancy, psychovisual redundancy	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board
56		Fidelity criteria	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing		PPT, Pen, White Board
57	V	Image compression models: the source encoder and decoder, the channel encoder and decoder	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understandin g Domain Knowledge	PPT, Pen, White Board
58		Error free compression: Huffman coding	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understandin g Domain Knowledge	PPT, Pen, White Board
59		Problems on Huffman coding	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN LLFlacxdFmQgO4 Fisna?usp=sharing	Understandin g Domain Knowledge	PPT, Pen, White Board
60		Problems on Huffman coding	Definition, Properties	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN	https://drive.googl e.com/drive/folder s/1ekC5jtUI4budN	Understandin g Domain Knowledge	PPT, Pen, White

			LLFlacxdFmQgO4	LLFlacxdFmQgO4		Board	
			Fisna?usp=sharing	Fisna?usp=sharing			
		Definition,	https://drive.googl	https://drive.googl		PPT,	
(1	Arithmetic	Properties	e.com/drive/folder	e.com/drive/folder	Understandi	Pen,	
61	coding		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	ng Domain	White	
			LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	Board	
			Fisna?usp=sharing	Fisna?usp=sharing			-
	Problems on	Definition,	https://drive.googl e.com/drive/folder	https://drive.googl e.com/drive/folder		PPT,	
62	Arithmetic	Properties			Understandin a Domain	Pen,	
02			s/1ekC5jtUI4budN LLFlacxdFmQgO4	s/1ekC5jtUI4budN	g Domain Knowledge	White	
	coding		Fisna?usp=sharing	LLFlacxdFmQgO4 Fisna?usp=sharing	Kilowieuge	Board	
		Definition,	https://drive.googl	https://drive.googl			-
	Bit plane	,	e.com/drive/folder	e.com/drive/folder	Understandin	PPT,	
63	coding, run	Properties	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	g Domain	Pen,	
03	length coding		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	White	
			Fisna?usp=sharing	Fisna?usp=sharing	Kilowieuge	Board	Digita
		Definition,	https://drive.googl	https://drive.googl			1
	Problems on	Properties	e.com/drive/folder	<u>e.com/drive/folder</u>	Understandin	PPT,	Image
64	run length	ropentes	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	g Domain	Pen,	Proces
04	coding		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	White	sing -
	coung		Fisna?usp=sharing	Fisna?usp=sharing	ithowiedge	Board	Rafael
		Definition,	https://drive.googl	https://drive.googl			С.
	Lossless	Properties	e.com/drive/folder	e.com/drive/folder	Understandin	PPT,	Gonzal
65	predictive	Tropenties	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	g Domain	Pen,	ez,
00	coding		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	White	Richar
	toung		Fisna?usp=sharing	Fisna?usp=sharing	linewieuge	Board	d E.
	Lossy	Definition,	https://drive.googl	https://drive.googl			Woods
	compression:	Properties	e.com/drive/folder	e.com/drive/folder	Understandi	PPT,	, 3rd
66	Lossy	riopennes	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	ng Domain	Pen,	Editio
	predictive		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	White	n,
	coding		Fisna?usp=sharing	Fisna?usp=sharing		Board	Pearso
		Definition,	https://drive.googl	https://drive.googl		DDT	n,
	Lossy	Properties	e.com/drive/folder	e.com/drive/folder	Understandi	PPT,	2008
67	predictive	1	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	ng Domain	Pen,	
	coding		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	White	
			Fisna?usp=sharing	Fisna?usp=sharing		Board	
		Definition,	https://drive.googl	https://drive.googl		דתם]
	Transferme	Properties	e.com/drive/folder	e.com/drive/folder	Understandi	PPT, Der	
68	Transform	•	s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	ng Domain	Pen, White	
	coding		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	White Board	
			Fisna?usp=sharing	Fisna?usp=sharing		Боага	
		JPEG 2000	https://drive.googl	https://drive.googl		PPT,	
	JPEG 2000	Standards.	e.com/drive/folder	e.com/drive/folder	Understandi	PP1, Pen,	
69	standards		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	ng Domain	White	
	standards		LLFlacxdFmQgO4	LLFlacxdFmQgO4	Knowledge	Board	
			Fisna?usp=sharing	Fisna?usp=sharing	_	Doard	
	Bridge Class	Definition,	https://drive.googl	https://drive.googl	Understandi	PPT,	
70	Bridge Class – VIII	Properties	e.com/drive/folder	e.com/drive/folder	ng Domain	Pen,	
	- v 111		s/1ekC5jtUI4budN	s/1ekC5jtUI4budN	Knowledge	White	

	LLFlacxdFmQgO4 Fisna?usp=sharing Fisna?usp=sharing	Board
--	--	-------

IX MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcom es	Prog	Program Outcomes							Program Specific Outcomes						
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
1	3	3	-	1	1	3	3	1	-	1	3	1	1	1	1
2	-	-	-	2	-	3	-	-	2-	-	-	-	1	1	1
3	3	3	2		1	-	3	1	-	1	3	1	-	-	-
4	3	-	-	2	1	-	-	-	2	-	3	1	1	1	1
5	-	3	-	1	-	-	3	1	-	1	-	1	1	1	1
6	3	-	-	-	1	3	-	1	2	1	3	-	-	-	-
AVG	2	1.5	0.3 4	0.5	0.6 7	1.5	1.5	0.6 7	1	0.67	2	0.67	0.67	0.67	0.67

X QUESTION BANK (JNTUH)

UNIT I

Long Answer Questions

		Blooms	
		taxonomy	Course
S. No	Question	level	Outcomes
1	Explain the steps involved in digital image processing	Understand	1
2	Discuss about the following relationships between pixels with		
Z	neat diagrams	Remember	1
	. Neighbours of a pixel	Kemember	1
		D 1	1
3	Write the expressions for Walsh transform kernel and Walsh	Remember	<u> </u>
	transform (1D &2D).		
4	Briefly explain the forward and inverse transformation kernels	Understand	1
	of image transforms		
5	Name and explain some important properties of 2-D DFT	Understand	1
6	Discuss about the Slant transform (1-D & 2-D)	Remember	1
7	Discuss about the Hadamard transforms (1-D & 2-D)	Remember	1
8	Discuss about the Haar transform (1-D & 2-D)	Remember	1
9	Discuss about the Hotelling transforms (1-D & 2-D)	Remember	1
10	State and prove separability property of 2D-DFT.	Understand	1
11	State and prove the translation property	Remember	1
12	State distributivity and scaling property	Remember	1

Short Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	List the steps involved in digital image processing	Understand	1
2	How do you represent the digital images?	Remember	1
3	Explain about sampling and quantization of an image.	Understand	1
4	Explain a simple Image formation model	Understand	1
5	Name various arithmetic and logical operations that can be done on Images	Understand	1
6	What are the different fields in which Digital Image Processing is used?	Remember	1
7	Explain about some of the geometrical operations that can be done on images	Understand	1
	Distinguish between Fourier Magnitude Spectrum, Fourier Phase		
8	Spectrum and Power spectrum.	Remember	1
9	Define discrete cosine transform	Understand	1
10	Define an Image	Understand	1
11	What is meant by pixel?	Understand	1
12	Define Resolutions	Remember	1
13	What is Dynamic Range?	Understand	1
14	What is meant by illumination and reflectance?	Remember	1
	Find the number of bits required to store a 256 X 256 image with		
15	32 gray levels	Remember	1
	Write the expression to find the number of bits to store a digital		
16	image?	Understand	1
17	What is the need for transform?	Understand	1

UNIT 2

Long Answer Questions

		Blooms taxonomy	Course
S. No	Question	level	Outcomes
	Explain smoothing spatial filters and nonlinear order statistic spatial		
1	filters	Understand	3
2	Explain about Prewitt and Sobel edge Detectors	Remember	3
3	Describe image Histogram Equalization	Remember	3
	Explain the method of using the second derivate for Image		
4	sharpening by Laplacian Operator	Remember	3
	5. What is high boost spatial filtering? Compare it with high pass		
5	spatial filtering	Understand	3
6	6.Discuss how the Bit Plane Slicing is useful in image processing	Understand	3
	7.Discuss the importance of a kernel or mask or window in spatial		
7	filtering used for enhancement of a digital image	Analyze	3
	How does the spatial filter with name Order static filter (non linear		
8	filter) or median filter work?	Evaluate	3
	What is meant by image enhancement by point processing? Discuss		
9	any two methods in it.	Remember	3

	.Define histogram of a digital image. Explain how histogram is			
10	useful in image enhancement?	Understand	3	
11	. Write about Smoothing Spatial filters	Understand	3	
	. What is meant by the Gradiant and the Laplacian? Discuss their			
12	role in image enhancement.	Remember	3	
13	.Description of Homo-morphic filtering	Remember	3	
14	. Expression for 2-D IHPF, Expression for BHPF, Expression for GHPF with sketches. Explain their usefulness in Image enhancement	Apply	3	
1.5	. Give the expression for 2-D ILPF, BLPF & GLPF functions and	TT 1 4 1	2	
15	sketch them. Explain their usefulness in Image enhancement	Understand	3	
16	. Expression for Butterworth Low Pass Filter in frequency domain and discuss	Remember	3	
17	. Compare the characteristics of Low pass, High pass and Homo- morphic filters in image enhancement in frequency domain.	Analyze	3	
	. Discuss about Ideal High Pass Filter and Butterworth High Pass			
18	filter	Remember		3

Short Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	Narrate the concept of derivative filters.	Understand	3
2	Discuss how the derivative filters are used in Digital Image Enhancement?	Remember	3
3	Describe Histogram Specification	Understand	3
4	Explain Gray level transformation functions for contrast enhancement	Remember	3
5	Discuss the Image negatives transformations	Understand	3
6	Discuss the Contrast stretching transformations	Understand	3
7	Explain the Local enhancement	Understand	3
8	Explain the Image subtraction	Apply	3
9	Explain the Image averaging	Apply	3
10	What is the objective of image enhancement? Define spatial domain. Define point processing		3
11	Explain on procedure to derive frequency domain filtering from spatial domain	Remember	3
12	Explain the method to set the cut off frequencies in ILPF?	Analyze	3
13	Correspondence between filtering in the spatial & frequency domains	Understand	3
14	Explanation on the basic steps for filtering used to enhance an image in frequency domain	Understand	3
15	Explain the concept of homomorphism filtering	Understand	3

UNIT 3 Long Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	Explain the method of Least Mean Squares Filtering (Wiener) for image restoration	Understand	4
2	Explain model of image degradation/restoration process with a block diagram	Apply	4
3	Explain the method of Constrained Least Squares Filtering for image restoration	Understand	4
4	Explain three principle ways to estimate the degradation function for use in image restoration	Understand	4
5	Discuss the process of image restoration by direct inverse filtering?	Understand	4
6	Write about Noise Probability Density Functions for all noise models	Understand	4

Short Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	Compare image enhancement and restoration techniques?	Understand	4
2	Give the probability density functions for Rayleigh noise	Remember	4
3	Give the probability density functions for the Erlang noise models	Remember	4
4	Give the probability density functions for Gaussian noise models	Remember	4
5	Give the probability density functions for Salt and Pepper noise models	Remember	4

UNIT 4

Long Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	What are the derivative operators useful in image segmentation? Explain their role in segmentation	Understand	5
2	What is thresholding? Explain about global thresholding	Remember	5
3	Explain about basic adaptive thresholding process used in image segmentation	Understand	5
4	Explain in detail the threshold selection based on boundary characteristics	Understand	5
5	Explain about region based segmentation	Understand	5
6	What are the derivative operators useful in image segmentation? Explain their role in segmentation	Apply	5
7	Explain about the Global processing via the Hough Transform	Apply	5

	for edge linking		
8	Explain about the Global processing via graph-theoretic techniques for edge linking	Understand	5
9	Explain about Region Splitting and Merging with an example	Apply	5
10	Write about the importance of Hit-or-Miss morphological transformation operation on a digital binary image	Understand	6
11	Explain the opening operation in image morphology with examples?	Analyze	6
12	Explain the closing operation in image morphology withexamples?	Understand	6
13	Discuss the main steps involved in Continuous Wavelet Transform	Understand	6

Short Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	Write about edge detection	Remember	5
2	Explain about the Local processing for edge linking	Understand	5
3	Write short note on Region Growing	Remember	5
4	Write the mask for prewitt operator	Remember	5
5	Write the mask for sobel operator	Remember	5
6	Write the mask for laplacian operator	Remember	5
7	Define segmentation	Remember	5
8	Describe dilation morphological transformations on a binary image	Apply	6
9	Describe erosion morphological transformations on a binary image	Apply	6
10	Write short notes on Structuring elements in image morphological transformations	Understand	6
11	Write short notes on Hit-miss Transformation	Understand	6
12	What are the Applications of morphology	Remember	6

UNIT 5

Long Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	Explain about fidelity criterion	Understand	5
2	Explain about image compression models	Understand	5
3	Explain a method of generating variable length codes with an example	Understand	5
4	Explain arithmetic encoding process with an example	Apply	5
5	Explain LZW coding with an example.	Apply	5

6	Explain the concept of bit plane coding method	Understand	5
7	Explain about lossless predictive coding	Understand	5
8	Explain about lossy predictive coding	Understand	5
9	Explain with a block diagram about transform coding system	Understand	5

Short Answer Questions

S. No	Question	Blooms taxonomy level	Course Outcomes
1	How to calculate the memory required to store an image	Understand	5
2	Define image compression	Remember	5
3	What is image compression	Remember	5
4	Explain Coding Redundancy	Understand	5
5	Explain Interpixel Redundancy	Understand	5
6	Explain Psychovisual Redundancy	Understand	5
7	What are the characteristics of lossy compression	Remember	5
8	What are the characteristics of lossless compression	Remember	5

IV. Objective type questions:

UNIT-I

- 1 Image is defined as ()
 - a)2 d function b) 3 d function c) 1d function d) none
- 2 Image is a group of **<u>pixels</u>**
- 3 Walsh transform is used for *image compression*
- 4 8 bit image is also known as()
 - a) Color image b) B& W image c) gray level image d) none
 - 5 Number of pixels present in MXN size image is()
 - a) M/N bits b)MN bits c) MN Kbytes d) none
 - 6. Among the following image processing techniques which is fast, precise and flexible
 - a) optical **b) digital** c) electronic d) photographic
 - 7. An image is considered to be a function of a(x,y) where a represents
 - a) height of image b) width of image c) amplitude of image d) resolution of image
 - 8). Image negatives a gray level transformation is defined as:
- **a. s=L-1-r** b. s=L-r c. s=r-1-L d. none

Unit-II:

- The relative frequency of occurrence of various gary levels present in an image is known as()
 a) Bit plane b) pyramid c)histogram d) none
- 2. Smoothing filters also known as <u>LPF</u>
- 3. Sharpening filters also known as HPF
- 4. Image noise can be eliminated using()
 - a) HPF **b**) LPF c) BPF d) none
- 5. Which is the image processing technique used to improve the quality of image for human viewing? a) Compression b) enhancement c) restoration d) analysis
- 6. Median filter eliminates salt and pepper noise

7. Which type of enhancement operations are used to modify pixel values according to the value of the pixel_s neighbors?

a) point operations b) local operations c) global operations d) mask operations

8. What is spatial resolution?

a)it is the largest discernible detail in an image b)it is the smallest discernible detail in an image c) a & b d) None

9. Image enhancement in frequency domain uses the following 2D DFT property()

a)Scaling b) Rotation c)centering d) none

- 10. Smoothing filters also known as LPF
- 11. Homomorphic filter is used for contrast enhancement
- 12. Lapalcian filter also known as

a)HPF b) LPF c) BPF d) none

13. Max filter eliminates dark points

- 14. Which image processing technique is used to eliminate electronic noise by mathematical process?
- a) Frame averaging b) Image understanding c) Image compression d) none

15. Frequency domain refers:

a) Processing techniques are based on modifying the Fourier transform of an image

b. its processing techniques are based on modifying the laplace transform of an image.

- c) a& b
- d) None

Unit-III

- 1 Which of the following is a simple image restoration technique which eliminates noise a)weighted restoration b) smoothing c)inverse d) none
- 2 Constrained least square restoration requires PSD
- 3 Inverse filtering is used for noise removal
- 4 Constrained least square restoration is a()

a)Weighted restoration b) non weighted restoration c) frequency domain d) none

- 5 Image degradation techniques removes blurring
- 6 Which is a fundamental task in image processing used to match two or more pictures?
 - a) Registrationb) segmentation c) computer vision d) image differencing

Unit-IV

1 Image segmentation uses the following opearators()

a)Scaling b) Rotation c)derivative d) none

- 2 First order derivative operator is used for Edge detection
- 3 Graph theoretic approach is used for Edge linking
- 4 Region oriented segmentation includes

a) Merging b) Splitting c) Both a and b d) none

5 Robert's operator is used for edge detection

6. What algorithm is used in fingerprint technology?

a) Intensity based algorithm b) pattern based algorithm c) feature based algorithm d) Recognition algorithm

- 7. In which technique which is used to determine changes between two images?
- a) Image differencing b) segmentation c) skin texture analysis d) image differencing
- 8. Select one of the most appropriate applications of Computer vision?

a) Medical computer imagingb) remote sensing c) geographical map d) medical diagnosis

9. The initial step in any image processing technique is

a) Segmentation b) masking c) image acquisition d) normalization

10. Dilation-Morphological image operation technique is used to

a) Shrink brighter areas of the image

b) Diminishes intensity variation over the image

- c) Expands brighter areas of the image
- d) Scales pixel intensity uniformly

11. Which technique is used for the images of the same scene are acquired from different viewpoints

- a) multiview analysisb) multitemporal analysis c) multisensory analysis d) image differencing
- 7. Localization of iris, pupil, and eyelids come under

a) Normalization b) masking c) extraction d) segmentation

12. Morphological processing deals:

a)With tools for extracting image components that are useful in the representation and description of shape.

b) With tools for changes in image components that are useful in the representation and description of shape

- c) a& b
- d) None

Unit-V

- 1. Image compression is used for reducing the following parameter()
- a) Size b) memory c)noise d) none
- 2. Lossy compression technique reduces the quality of the image
- 3. Image compression is
- a) Making image look better
- b) Sharpening the intensity-transition regions
- c) Minimizing degradation over image
- d) Reducing the redundancy of the image data
- 4. First application of digital image was in the:
- a) News paper industry b) communication system c) a & b d) None of these
- 5. Which sensor is used for obtaining the video source in 3d face recognition system
- a) Optical b) electronic c) 3d sensord) 2d sensor

V. GATE QUESTIONS / UGC - NET:

DIP is not applicable for GATE and IES

VI. WEBSITES:

- 1. <u>www.imageprocessingplace.com</u>
- 2. <u>www.theiet.org</u>.

VII. EXPERT DETAILS:

VIII. JOURNALS:

International:

- 1. IEEE Transactions on Pattern Analysis and Machine Intelligence, ISSN:0162-8828, Monthly.
- 2. IEEE Transactions on Image Processing, ISSN:1057-7149, Monthly.
- 3. Computer Vision and Image Understanding, ISSN:1077-3142, Monthly.
- 4. International Journal of Imaging Systems and Technology, ISSN:0899-9457, Quarterly

National:

- 1. Journal of Image Processing.
- 2. Journal of Signal and Image Processing

IX. LIST OF TOPICS FOR STUDENT SEMINARS:

- 1. Image enhancement for medical images.
- 2. Types of compression techniques.
- 3. Lossy and lossless compression
- 4. Transform coding method and wavelet method.
- 5. Morphological processing.
- 6. Edge detection techniques.

X. CASE STUDIES / SMALL PROJECTS:

- 1. Using MATLAB detection of tumor.
- 2. Implementation of speckle noise removal using various enhancement techniques in medical and SAR images.
- 3. Implementation of image compression for medical images